

Biochimica et Biophysica Acta 1562 (2002) 6-31

Review

Protein-translocating outer membrane porins of Gram-negative bacteria

Ming-Ren Yen^{a,1}, Christopher R. Peabody^{a,2}, Salar M. Partovi^a, Yufeng Zhai^a, Yi-Hsiung Tseng^b, Milton H. Saier Jr.^{a,*}

^aDivision of Biology 0116, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093-0116, USA

^bInstitute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC

Received 16 October 2001; received in revised form 17 January 2002; accepted 17 January 2002

Abstract

Five families of outer membrane porins that function in protein secretion in Gram-negative bacteria are currently recognized. In this report, these five porin families are analyzed from structural and phylogenetic standpoints. They are the fimbrial usher protein (FUP), outer membrane factor (OMF), autotransporter (AT), two-partner secretion (TPS) and outer membrane secretin (Secretin) families. All members of these families in the current databases were identified, and all full-length homologues were multiply aligned for structural and phylogenetic analyses. The organismal distribution of homologues in each family proved to be unique with some families being restricted to proteobacteria and others being widespread in other bacterial kingdoms as well as eukaryotes. The compositions of and size differences between subfamilies provide evidence for specific orthologous relationships, which agree with available functional information and intra-subfamily phylogeny. The results reveal that horizontal transfer of genes encoding these proteins between phylogenetically distant organisms has been exceptionally rare although transfer within select bacterial kingdoms may have occurred. The resultant in silico analyses are correlated with available experimental evidence to formulate models relevant to the structures and evolutionary origins of these proteins. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Phylogeny; Evolution; Gram-negative bacteria; Outer membrane; Porins; β-barrel

1. Introduction

The dual membrane envelopes of Gram-negative bacteria provide two barriers of unlike nature that pose formidable problems concerning the transport of molecules into and out of these diverse organisms. While nutrients and essential cofactors must be actively transported into the cells, end products of metabolism, toxic substances and secreted macromolecules must be actively extruded. Specific transport systems have evolved to achieve these goals. The diversity of such systems currently recognized in Gramnegative bacteria far exceeds that recognized in Grampositive bacteria, archaea or eukarya [1].

Protein secretion proves to be illustrative of this fact. Thus, while Gram-positive bacteria, eukaryotes and archaea exhibit just three known, functionally characterized protein secretory systems for transport across cytoplasmic/endoplasmic reticular membranes, first, the so-called general secretory pathway (GSP) or type II secretory pathway (IISP) [2] (T.B. Cao and M.H. Saier, Jr., submitted); second, the cytochrome oxidase biogenesis (Oxa1/YidC) pathway [3–5]; and third, the twin arginine targeting/translocation (Tat) pathway, Gram-negative bacteria have multiple such systems for protein transport across their cytoplasmic membranes as well as multiple systems for transport across their outer, lipopolysaccharide-containing membranes [6]. Moreover, distinct pathways may overlap since some evidence suggests that the Tat pathway can feed into the GSP [7], and insertion of integral membrane proteins via the GSP may sometimes function in conjunction with the Oxa1/YidC system (see Refs. [4,5] for reviews).

Among the outer membrane protein (OMP) secreting porins, those of types II, III and IVSP have recently been characterized from phylogenetic and structural standpoints [2,8–11] (T.B. Cao and M.H. Saier, Jr., submitted). While types IISP and IIISP systems use oligomeric secretins [10], type IVSP systems may use heterooligomeric structures consisting of three sequence dissimilar proteins [8]. Four additional protein secreting OMPs are currently recognized

^{*} Corresponding author. Tel.: +1-858-534-4084; fax: +1-858-534-7108. E-mail address: msaier@ucsd.edu (M.H. Saier Jr.).

¹ Present address: Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC.

² Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.

in Gram-negative bacteria. Three of these four families have been analyzed previously, the fimbrial usher protein (FUP) family [12–14], the outer membrane factor (OMF) family [15–17] and the autotransporter (AT) family [18]. The fourth family, the two-partner secretion (TPS) family, has not, to our knowledge, been carefully examined from a phylogenetic standpoint [19]. In this communication, we provide updates of the five families of outer membrane porins that are believed to function in the export of proteins via homooligomeric structures.

2. Computer programs

Computer programs used were as follows: (1) the PSI-BLAST program [20] with iterations to convergence was used to screen the databases for homologues of the five OMPs that represent the focus of this study. The query sequences were those included on our web site (see wwwbiology.ucsd.edu/~msaier/transport/). The homologues found and reported in this review represent those proteins in the databases as of June-July, 2001. (2) The CLUSTAL X program [21] and (3) the TREE program [22] were used for multiple alignment of homologous sequences and derivation of phylogenetic trees with the aid of the BLOSUM30 scoring matrix and the TREEVIEW drawing program [23] (see Ref. [24] for evaluation of these and other relevant programs). (4) The TMPred program [25] and (5) the TopPred2 program [26] were used for prediction of the integral membrane topologies of individual proteins. (6) The DAS program was used for prediction of secondary structure. (7) The WHAT program [27], with a sliding window of from 7 to 21 residues, was used to simultaneously predict hydropathy, amphipathicity (angle of 100° for α -helix; angle of 180° for β -strand), topology and secondary structure of individual proteins. (8) The AveHAS program [28] was used for plotting average hydropathy, similarity and amphipathicity as a function of alignment position in the multiple alignments. These programs are available on our "software" and "biotools" web sites http://www-biology.ucsd.edu/~msaier/transport/ and http://www-biology.ucsd.edu/~yzhai/biotools.html, respectively).

In this paper, we use the WHAT [27] and AveHAS [28] programs in combination to predict transmembrane β-strands in porins. These recently developed programs combine several established programs to make structural predictions about transmembrane proteins. For example, the WHAT program examines individual proteins, using JNET [29] and MEMSAT [30] for secondary structure and transmembrane topology prediction, respectively. Both of these programs are among the best available for these purposes. The AveHAS program first generates a multiple alignment for a collection of homologous sequences [21] and then averages (1) hydropathy, (2) amphipathicity and (3) similarity plots to provide structural information that is much

more reliable than possible when evaluating single proteins sequences [28]. Transmembrane β-strands can thus be accurately predicted because they exhibit (1) predicted βstructure using JNET, (2) increased hydrophobicity, relative to other portions of the polypeptide chain, and (3) increased amphipathicity when the angle is set at 180° as is appropriate for β-strands [31]. This method predicts transmembrane β-strands with 70-85% accuracy. For example, for the following outer membrane β-barrel proteins of known three-dimensional structure (all from Escherichia coli), OmpF (PDB code #1opf) has 16 β-strands but the program predicts 12 (75%). LamB (PDB #1mal) has 18 β-strands; 13 (72%) are predicted; FepA (PDB #1by5) has 22; 19 (86%) are predicted; the OmpX protein (PDB #1qi9) has 8; 6 (75%) are predicted; and phospholipase A (PDB #1qd6) has 12; 10 (83%) are predicted.

3. The fimbrial usher protein (FUP) family (TC #1.B.11)

The FUP family consists of a group of large proteins (most in the 800-900 amino acyl residue (aa) range) present in the outer membranes of Gram-negative bacteria, cyanobacteria and *Deinococcus radiodurans* (Table 1; [13,32,33]). They are believed to contain a large central domain that spans the membrane 24 times as β -strands, presumably forming a β -barrel structure and a transmembrane pore [12,34]. They also possess N-terminal and C-terminal periplasmic domains which may function in protein folding and subunit assembly [14,35]. Each FUP acts in the assembly process together with a periplasmic fimbrial chaperone protein [12,34,36]. The mechanism by which the assembled fimbrial structure is exported through the usher protein across the outer membrane is not well understood.

A single bacterial species such as *E. coli* may be capable of synthesizing numerous fimbriae, and the operon encoding the structural proteins of each fimbrium also encodes the fimbrium-specific periplasmic chaperone protein and the fimbrium-specific outer membrane usher protein [12,37]. Phylogenetic analyses suggest that the chaperone protein and the usher protein, in general, evolved in parallel from their evolutionary precursor proteins [13].

One member of the FUP family, PapC (Table 1), has been shown to form oligomeric channels, 2 nm in diameter, in the outer membrane of *E. coli* [38]. This pore size is large enough to accommodate fimbrial subunits and even partially assembled linear structures. Complexes formed by members of the FUP family may be superficially similar to complexes formed by the PulD secretin (see Table 7) and other related proteins involved in secretion across Gram-negative bacterial outer membranes (C. Peabody, M.-R. Yen, Y.J. Chung and M.H. Saier, Jr., unpublished—in prep.).

Table 1 lists the currently sequenced FUP family members according to organism. With the exception of *D. radiodurans*, an organism classified as Gram-positive [39], all proteins are derived from recognized Gram-negative

Table 1 Recognized homologues of the FUP family

Abbreviation	Database description	Organism	Bacterial type	Size	GI number
FimC Bpe	outer membrane usher protein FimC precursor	Bordetella pertussis	β	873	462099
Orf Dra	hypothetical protein	Deinococcus radiodurans	Dei	729	10957506
AfaC Eco	outer membrane usher protein AfaC precursor	Escherichia coli	γ1	859	1703198
AggC Eco	outer membrane usher protein AggC precursor	Escherichia coli	γ1	842	1168385
CfaC Eco	CFA/I fimbrail subunit C precursor	Escherichia coli	γ1	869	116127
CooC Eco	CooC protein precursor	Escherichia coli	γ1	872	2121085
CotC Eco	CotC protein precursor	Escherichia coli	γ1	866	2121089
CS3-2 Eco	outer membrane usher protein CS3-2 precursor	Escherichia coli	γ1	937	1169100
CsdD Eco	outer membrane usher protein CssD precursor	Escherichia coli	γ1	819	1706159
CshB Eco	CshB porin (usher)	Escherichia coli	γ1	800	2808451
CssD Eco	outer membrane usher protein CssD precursor	Escherichia coli	γ1	802	1706160
CswD Eco	CS12 fimbria outer membrane usher protein precursor	Escherichia coli	γ1 ~1	835 812	13096074 119815
FaeD Eco	outer membrane usher protein FaeD precursor	Escherichia coli	γ1 ~1	783	
FanD Eco FasD Eco	outer membrane usher protein FanD precursor	Escherichia coli Escherichia coli	γ1 γ1	835	119821 1169651
HtrE Eco	outer membrane usher protein FasD precursor outer membrane usher protein HtrE precursor	Escherichia coli	γ1 ~1	865	2506411
PmfC Eco	hypothetical outer membrane usher protein	Escherichia coli	γ1 γ1	821	2851668
PapC Eco	outer membrane usher protein PapC precursor	Escherichia coli	γ1 γ1	836	129618
SfmD Eco	outer membrane usher protein SfmD precursor	Escherichia coli	γ1 γ1	867	2494481
YbgQ Eco	hypothetical outer membrane usher protein	Escherichia coli	γ1 γ1	818	2829628
YehB Eco	hypothetical outer membrane usher protein	Escherichia coli	γ1 γ1	826	465572
YagX Eco	hypothetical 91.2 kDa protein	Escherichia coli	γ1 γ1	841	2495503
YcbS Eco	hypothetical outer membrane usher protein	Escherichia coli	γ1 γ1	866	2829634
FocD Eco	outer membrane usher protein FocD precursor	Escherichia coli	γ1	875	1169721
FimD Eco	outer membrane usher protein FimD precursor	Escherichia coli	γ1	878	729491
Orfl Eco	hypothetical outer membrane usher protein	Escherichia coli	γ1 γ1	881	3915996
Orf2 Eco	hypothetical outer membrane usher protein	Escherichia coli	γ1	838	1176812
Orf3 Eco	hypothetical outer membrane usher protein	Escherichia coli	γ1	793	1176192
Orf4 Eco	putative FUP	Escherichia coli	γ1	883	12515165
Orf5 Eco	putative fimbrial chaperone	Escherichia coli	γ1	807	1850972
Orf6 Eco	putative fimbrial usher	Escherichia coli	γ1	844	12518578
Orf7 Eco	putative fimbrial usher	Escherichia coli	, γ1	879	12516702
HifC Hin	outer membrane usher protein HifC precursor	Haemophilus influenzae	γ2	837	1170260
MrkC Kpn	outer membrane usher protein MrkC precursor	Klebsiella pneumoniae	, γ1	828	127306
Orf Mlo	hypothetical protein	Mesorhizobium loti	α	807	13476410
PhfD Plu	PhfD protein (partial)	Photorhabdus luminescens	γ1	799	13236169
PmfC Pmi	outer membrane usher protein PmfC precursor	Proteus mirabilis	γ1	828	1709669
AtfC Pmi	outer membrane usher protein	Proteus mirabilis	γ1	843	1504107
MrpC Pmi	MrpC protein	Proteus mirabilis	γ1	871	485956
Orf1 Pae	hypothetical protein PA4652	Pseudomonas aeruginosa	γ3	790	11350238
Orf2 Pae	probable fimbrial biogenesis usher protein PA0994	Pseudomonas aeruginosa	γ3	839	11351298
Orf3 Pae	probable fimbrial biogenesis usher protein PA4084	Pseudomonas aeruginosa	γ3	895*	11351300
Orf4 Pae	probable fimbrial biogenesis usher protein PA2130	Pseudomonas aeruginosa	γ3	872	11351299
TofC Sen	TcfC protein	Salmonella enterica	γ1	895*	5640161
SefC Sen	outer membrane usher protein SefC precursor	Salmonella enteritidis	γ1	814	464755
LpfC Sty	outer membrane usher protein LpfC precursor	Salmonella typhimurium	γ1	842	1170817
FimD Sty	outer membrane usher protein FimD precursor	Salmonella typhimurium	γ1	870	585135
BcfC Sty	bovine colonization factor BcfC	Salmonella typhimurium	γ1	870	4530570
PefC Sty	outer membrane usher protein PefC precursor	Salmonella typhimurium plasmid pCRR10	γ1	802	585660
Orf Ssp	hypothetical protein	Synechocystis sp.	Cya	892	7469533
CsuD Vpa	CsuD protein	Vibrio parahaemolyticus	γ1	802	13649959
Orf Xfa	outer membrane usher protein precursor XF0081	Xylella fastidiosa	$\gamma 4$	901	11277504
MyfC Yen	outer membrane usher protein MyfC precursor	Yersinia enterocolitica	γ1	841	462676
PsaC Ype	outer membrane usher protein PsaC precursor	Yersinia pestis	γ1	831*	2506412
Cafl A Ype	F1 capsule anchoring protein precursor	Yersinia pestis	γ1	833	115438
Orfl Ype	hypothetical protein	Yersinia pestis	γ1	863	11277505
Orf2 Ype	F1 capsule anchoring protein	Yersinia pestis plasmid pMT1	γ1	833	3747030
PsaC Yps	outer membrane usher protein PsaC precursor	Yersinia pseudotuberculosis	γ1	832*	2494482

^{*} These proteins are reported on the database to be smaller than reported here, usually due to incorrect initiation codon assignment.

bacteria. *D. radiodurans* exhibits an unusual dual membrane envelope where the two membranes are of essentially the same lipid composition. The outer membrane of this organism lacks lipopolysaccharide, the cell surface antigenic hallmark of Gram-negative bacteria [39].

Examination of Table 1 reveals an unexpected organismal representation. Thus, of the 58 proteins listed, more than half (30) are from E. coli strains, and 16 more are from the closely related enteric γ-proteobacterial genuses, Klebsiella (one protein), Proteus (three proteins), Salmonella (six proteins) and Yersinia (six proteins). Thus, only 12 proteins are from more divergent bacteria. Of these, four are from Pseudomonas aeruginosa, and one each is derived from Haemophilus influenzae, Photorhabdus luminescens, Vibrio parahaemolyticus and Xylella fastidiosa, all non-enteric γproteobacteria. The remaining four proteins are from Bordetella pertussis, a β-proteobacterium, Mesorhizobium loti, an α-proteobacterium. Synechocystis sp., a cyanobacterium. and D. radiodurans. Many bacterial kingdoms that include organisms with completely sequenced genomes, including (1) the Spirochetes, (2) Neisserial species, (3) Chlamydia, (4) Helicobacter, (5) Rickettsia, (6) Mycoplasma, (7) low G+C Gram-positive bacteria, (8) high G+C Gram-positive bacteria and (9) primitive bacteria such as Thermatoga and Aquifex, do not exhibit a FUP family homologue. Thus, FUP family members appear to be largely restricted to the proteobacteria, and very few homologues are found outside of this bacterial kingdom.

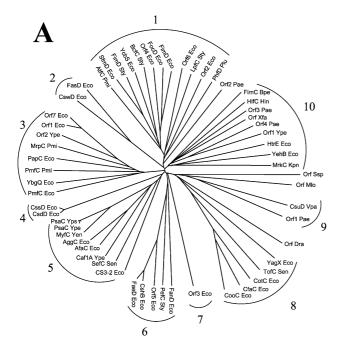
The protein size variation recorded in Table 1 is noteworthy. The smallest protein (729 aas) is derived from *D. radiodurans*, while the largest (937 aas) is the CS3-2 protein of *E. coli*, an unusual FUP family homologue with a C-terminal tail that exhibits no sequence similarity to anything else in the current databases. Excluding these two proteins, the size range varies from 783 aas to 901 aas, and the two largest of these proteins are from *X. fastidiosa* (901 aas) and *Synechocystis* sp. (892 aas). The *Salmonella enterica* TofC protein (889 aas) is the next largest homologue.

A multiple alignment of all identified FUP family homologues revealed only a single fully conserved residue, a glycine. However, only conservative substitutions were observed at many positions. The most highly conserved region occurred at alignment positions 405-426 in a central amphipathic β -sheet region. From this region, we sought to derive both a consensus sequence (the majority residue(s) at any position are portrayed) and a signature sequence. The consensus sequence for this region was:

Q N G (Y R) (L I V)₂ Y X₃ (L I V) (P A S)₂ G* (P A) F X (L I V) X D (L I V)

(Residues in parentheses represent alternative possibilities at a single position;

X = any residue; $G^* = \text{the fully conserved glycine}$.


Our attempts to derive a FUP family-specific signature sequence were not successful.

Average hydropathy, amphipathicity and similarity plots were generated using the AveHAS program [28]. The hydropathy plot revealed that excluding the N-terminal hydrophobic leader sequence, no region exhibited a sufficiently long stretch of strongly hydrophobic residues to pass through the membrane as an α -helix. Using an angle of 180° (as is appropriate for β -strands) for the derivation of the average amphipathicity plot, and a window size of seven residues, many short peaks of average amphipathicity in the second two-thirds of these proteins corresponded to peaks of average hydrophobicity as well as peaks of similarity. Many of these peaks in the central domain may correspond to transmembrane β -strands that contribute to the integral membrane β -barrel structure. Such structures are characteristic of outer membrane porins [40].

The WHAT program [27] was used with representative FUP family members to estimate topology and secondary structure. The program predicted that FUP family proteins are predominantly of β -structure throughout their lengths. It was therefore not possible to easily predict where the boundaries between the transmembrane domains and the putative periplasmic, C-terminal, β -structured, hydrophilic domains occur.

The FUP family phylogenetic tree, based on the CLUS-TAL X-generated multiple alignment, is shown in Fig. 1A. As noted above, all but a few of the members of the FUP family are derived from γ-proteobacteria closely related to the enteric bacteria. Most of the proteins can be considered to fall into 10 clusters. y-Proteobacterial proteins are found in all 10 clusters, and all remaining branches bear a single protein outside of the γ-proteobacterial clusters. These include the proteins from D. radiodurans (Dra), the α proteobacterium M. loti (Mlo) and the cyanobacterium, Synechocystis sp. (Ssp). The β-proteobacterial (Bordetella) protein (Bpe) is found as an outlier of cluster 10. Thus, all four proteins from non-γ-proteobacteria are on branches distant from the other proteins. The α-proteobacterial protein (Mlo) is possibly orthologous to the cluster 9 proteins while the β-proteobacterial protein (Bpe) is possibly orthologous to cluster 10 proteins.

Fig. 1B shows the phylogenetic tree for the 16S ribosomal RNAs of the organisms that include FUP family homologues. Seven organisms (E. coli, Salmonella typhimurium, Klebsiella pneumoniae, P. luminescens, Proteus mirabilis, Yersinia pestis and V. parahaemolyticus) form a tight cluster at the top left of the tree. H. influenzae is the next closest relative, while P. aeruginosa is significantly more divergent. The three more distant proteobacteria represented in Fig. 1B are more closely related to the aforementioned y-proteobacteria than they are to the two non-proteobacteria, as expected. In this connection, it is interesting to note that all but one of the seven organisms outside of the tight $\gamma 1$ cluster exhibit only one protein of the FUP family per organism, the exception being P. aeruginosa, which has an exceptionally large genome. Fully sequenced genomes are available for many

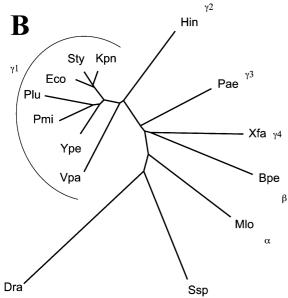


Fig. 1. The fimbrial usher protein (FUP) family. (A) Phylogenetic tree for currently recognized members of the FUP family. (B) 16S rRNA tree for organisms known to possess one or more FUP family homologue(s). Protein abbreviations are as indicated in Table 1. Greek letters in (B) and in subsequent figures refer to the proteobacterial subgroup.

of these organisms. It is interesting that both *Buchneria* sp. and *Vibrio cholera*, two γ -proteobacteria for which fully sequenced genomes were available at the time these studies were conducted, lack a FUP family member. It should be noted that many *E. coli* paralogues are plasmidencoded and/or specific to particular strains of this species.

The FUP family proteins were divided into three approximately equal sized fragments, the N-terminal, central and

C-terminal thirds, and these were analyzed phylogenetically. The resultant trees were strikingly similar to each other and to the tree shown in Fig. 1A, with just one minor exception (data not shown). The CS3-2 Eco protein thirds 1 and 2 clustered as shown in Fig. 1A, in cluster 5, but third 3 clustered loosely with PhfD Plu and Orf2 Eco in cluster 1. Because the CS3-2 Eco fragment sequences were always found to branch from points near the centers of these unrooted trees, it was not possible to establish that the latter difference was statistically significant. Thus, our phylogenetic analyses did not reveal obvious shuffling of protein domains during the evolutionary divergence of FUP family members.

4. The outer membrane factor (OMF) family (TC #1.B.17)

Proteins of the OMF family [15,17] function in conjunction with a primary cytoplasmic membrane transporter of the MFS (TC #2.A.1) [41], the ABC superfamily (TC #3.A.1) [42], the RND superfamily (TC #2.A.6) [43] and the PET family (TC #9.B.4) [44], as well as a membrane fusion protein (MFP; TC #8.A.1) [45]. The complex thus formed allows transport (export) of various solutes (heavy metal cations; drugs, oligosaccharides, proteins, etc.) across the two membranes of the Gram-negative bacterial cell envelope in a single energy-coupled step. The OMF proteins probably form homotrimeric, 12-stranded, β-barrel-type pores in the outer membrane through which the solutes pumped out of the cytoplasm or cytoplasmic membrane pass in response to the energy-coupled export process catalyzed by the cytoplasmic membrane permease [46]. One of these proteins, TolC of E. coli (Table 2), has been purified as a trimer, crystallized in two-dimensional lattices by reconstitution in phospholipid bilayers, and shown at 12 Å resolution to exhibit three-fold symmetry with an outer diameter of 58 Å and an internal stain-filled pore [46]. In one case, the complex of primary transporter, MFP and OMF was shown to form transiently in response to substrate binding [47].

The crystal structure of *E. coli* TolC has more recently been solved to 2.1 Å resolution [48]. Three TolC protomers form a continuous, solvent-accessible conduit, a channel tunnel over 140 Å long, which spans both the outer membrane (as 12 β -strands, four each per protomer) and the periplasmic space (as 12 α -helices, six continuous, six discontinuous, four each protomer). The α -helices are continuous with the β -strands. In the crystal structure, the periplasmic end of the tunnel is sealed by sets of coiled helices that might untwist upon contact with the primary permease to open the channel.

The OMFs exhibit a pseudosymmetrical structure due to the presence of two internally duplicated segments, and the outer membrane β -barrel is assembled from the three protomers with each one contributing four β -strands. Each

β-strand is between 10 and 13 residues long. The strands both curve and twist, yielding a superhelical structure, but the channel is wide open and fully accessible to solvent. The possibility of channel closure due to conformational mobility has not been excluded [48]. The results clearly suggest that the OMFs (and not the MFPs) are largely responsible for the formation of both the trans-outer membrane and trans-periplasmic channels [49,50]. The functional roles played by the MFPs have yet to be determined.

Table 2 lists the currently recognized members of the OMF family; 102 proteins are tabulated. Of these proteins, all are derived from Gram-negative bacteria with the sole exception of the dual membrane-possessing Gram-positive bacterium, D. radiodurans. Thirty-two bacterial genuses are represented, and these organisms include α -, β -, γ - and ε -proteobacteria, spirochetes, the cyanobacterium Synechocystis sp., D. radiodurans, Porphyromonas gingivalis, and Aquifex aeolicus. Several species exhibit multiple paralogues. For example, P. aeruginosa has 18, E. coli and Caulobacter crescentus have seven each, A. aeolicus has six and V. cholera has five. Nevertheless, it is worth noting that a few Gram-negative bacteria with fully sequenced genomes (species of Buchneria and Chlamydia, Thermatoga maritima and Treponema pallidum) lack a recognizable OMF family member.

A multiple alignment of all of the OMF family homologues was generated with the CLUSTAL X program. Although many positions were well conserved, none was fully conserved, and at no single position did conservative substitutions occur exclusively. A signature sequence could not be derived for this family. Like FUP family members, the proteins of the OMF family exhibit fairly uniform similarity throughout much of their lengths, although some proteins exhibited internal insertions relative to their homologues. For example, Orf Ssp exhibits a segment of about 60 residues (alignment positions 45-105) following the hydrophobic leader sequence (alignment positions 15-40), which is not found in any other homologue. Alignment positions 110-155 proved to be well conserved in all homologues, but Orfl Hpy and Orf12 Pae exhibit extensions at alignment positions 155–215 that are not present in the other homologues. Alignment positions 235-356 and 383-430, as well as positions 460–585 are also well conserved among almost all homologues. However, the smallest OMF family member, from D. radiodurans, exhibits two internal deletions (alignment positions 150-250 and 421-473), relative to all other homologues, both in regions of poor conservation where alignment gaps are common in many homologues as noted by Koronakis et al. [48]. It is therefore clear that OMFs exhibit extended regions of strong conservation as well as interdomain linker regions where length variability is common.

Because the high-resolution three-dimensional structure of the *E. coli* TolC is known [48], these observations can

be placed into a structural framework. TolC consists of an internally repeated structure. Each repeat unit consists of two short helices (H1 and H2 or H5 and H6), followed by two β-strands (S1 and S2 or S4 and S5), followed by two long helices (H3 and H4 or H5 and H6), followed by a short β-strand (S3 or S6). Within the repeat units, only S3 and S6 are not demonstrably homologous to each other. The major gaps in the aligned sequences occur (1) between the leader sequence and H1, (2) in the extracellular loop between S1 and S2, (3) in the junctional region between the two halves of the proteins (between S3 and H5), (4) in the second extracellular loop between S4 and S5, and (5) following H6. As noted above, S3 and S6 are not homologous. Thus, the extended regions encompassing H1+H2+S1 and the homologous H5+ H6+S4 are well conserved without insertions or deletions. The same is true of the extended regions encompassing S2 + H3 + H4 and the homologous S5 + H5 + H6. These results show that each repeat unit consists of two indivisible units, each containing two α -helices and one β strand where insertions and deletions cannot (or do not) occur. The only exception is the homologue in D. radiodurans.

The phylogenetic tree for the OMF family is shown in Fig. 2A, and that for the 16S ribosomal RNA tree of the represented organisms is shown in Fig. 2B. The latter tree shows seven separate clusters of proteobacteria plus five divergent bacterial species [51].

The tree for the OMFs reveals 12 clusters plus many proteins that do not cluster significantly with any other protein. Several observations are worthy of note: (1) γ proteobacterial proteins are found in all clusters except clusters 3 and 11, and they are also found on many divergent branches not included in the 12 clusters. Thus, many close and many distant paralogues are found in organisms that display multiple OMFs. (2) Clusters 3 and 11 include only α -proteobacterial proteins. Moreover, proteins from these bacteria are also found in clusters 6, 8 and 12, as well as on distant branches outside of the 12 clusters. However, none of these proteins clusters closely with a protein from another group of proteobacteria, leading to the conclusion that horizontal transfer of genes encoding OMFs to α-proteobacteria from bacteria of other groups has not occurred in recent evolutionary history. (3) β-Proteobacterial proteins are found in clusters 6, 7, 9 and 12, and in all such cases, loose clustering with a Pseudomonas protein is observed. Proteins from β-proteobacteria are also found on non-clustering branches. As for the α proteobacterial proteins, evidence for horizontal transfer of the encoding genes is lacking. (4) The single X. fastidiosa protein is found in cluster 2, loosely associated with both β- and γ-proteobacterial proteins, while the two Stenotrophomonas maltophilia proteins localize to cluster 8, loosely associated with one protein from E. coli and another from C. crescentus. (5) ε -Proteobacterial proteins are found in clusters 2 and 5, but they are distant members

Table 2 Recognized homologues of the OMF family

Abbreviation	Database description	Organism	Bacterial type	Size	GI number
NodT Atu	NodT homolog	Agrobacterium tumefaciens	α	484	9957271
NccC Ade	nickel-cobalt-cadmium resistance protein NecC precursor	Alcaligenes denitrificans	β	437	3914124
CzcC Asp	divalent cation resistant determinant protein C	Alcaligenes sp.	β	417	2120972
Orfl Aae	conserved hypothetical protein aq_1332	Aquifex aeolicus	Aqu	415	7514442
Orf2 Aae	hypothetical protein aq_1059	Aquifex aeolicus	Aqu	417	7517364
Orf3 Aae	conserved hypothetical protein aq_699	Aquifex aeolicus	Aqu	437	7514526
Orf4 Aae	hypothetical protein aq_1093	Aquifex aeolicus	Aqu	425	7517373
Orf5 Aae	hypothetical protein aq_1670	Aquifex aeolicus	Aqu	402	7517470
Orf6 Aae	hypothetical protein aq_1133	Aquifex aeolicus	Aqu	392	7517382
CyaE Bpe	CyaE protein precursor	Bordetella pertussis	β	474	117799
Orf Bbu	hypothetical protein BB0142	Borrelia burgdorferi	Spi	440	7463239
OpcM Bce	OpeM	Burkholderia cepacia	β	512 530	1061410 9911073
FusA Bce Orf Bps	fusaric acid resistance protein FusA precursor unknown	Burkholderia cepacia Burkholderia pseudomallei	β β	541	4139248
SapF Cfe	SapF	Campylobacter fetus	ε	433	4009449
Orfl Cie	probable outer membrane channel	Campylobacter jejuni	ε	492	11347034
om eje	protein Cj0365c	Campyiooacier jejani	C	402	11547054
Orf2 Cje	probable outer membrane protein Cj0608	Campylobacter jejuni	ϵ	456	11347036
Orf3 Cje	probable outer membrane component of efflux system Cj1031	Campylobacter jejuni	ε	424	11347035
TolC Ccr	outer membrane protein TolC, putative	Caulobacter crescentus	α	483	13422661
RsaF Ccr	type I secretion system outer membrane	Caulobacter crescentus	α	527	13422305
0.0.0	protein RsaF	G 11 .		467	12.422052
Orfl Ccr	efflux system protein	Caulobacter crescentus	α	467	13422053
Orf2 Ccr	efflux system protein	Caulobacter crescentus	α	478	13423215
Orf3 Ccr Orf4 Ccr	efflux system protein metal ion efflux outer membrane factor	Caulobacter crescentus Caulobacter crescentus	α	500 412	13424871
On4 Ccr	protein family	Cautobacter crescentus	α	412	13424310
Orf5 Ccr	metal ion efflux outer membrane factor protein family	Caulobacter crescentus	α	421	13423923
Orf Dra	hypothetical protein	Deinococcus radiodurans	Dei	347	7472106
TolC Eae	TolC protein	Enterobacter aerogenes	γ1	486	13539234
PrtF Eam	PrtF protein	Erwinia amylovora	γ1	437	4826418
PrtF Ech	protease secretion protein PrtF precursor	Erwinia chrysanthemi	γ1	462	131076
TolC Eco	outer membrane protein TolC precursor	Escherichia coli	γ1	495	135980
IbeB Eco	IbeB protein	Escherichia coli	γ1	460	4835717
Orf1 Eco	putative outer membrane channel protein	Escherichia coli	γ1	457	13361330
CusC Eco	probable outer membrane lipoprotein CusC precursor	Escherichia coli	γ1	457	2495560
Orf2 Eco	putative outer membrane export protein	Escherichia coli	γ1	451	12513363
YjcP Eco	hypothetical outer-membrane lipoprotein YjcP precursor	Escherichia coli	γ1	488	2851560
YohG Eco	hypothetical outer-membrane lipoprotein YohG precursor	Escherichia coli	γ1	478	9911117
Orfl Hin	hypothetical protein HI1462	Haemophilus influenzae	$\gamma 2$	454	1175810
Orf2 Hin	hypothetical protein HI1340	Haemophilus influenzae	$\gamma 2$	441	1175736
Orfl Hpy	hypothetical protein jhp1382	Helicobacter pylori	ϵ	510	7465023
Orf2 Hpy	hypothetical protein jhp0552	Helicobacter pylori	ϵ	477	7464752
Orf3 Hpy	hypothetical protein jhp0905	Helicobacter pylori	ϵ	431	7464875
Hel Lpn	Hel protein	Legionella pneumophila	γ3	414	511474
NodT Mlo	outer membrane protein, NodT candidate	Mesorhizobium loti	α	466	13471200
TolC Nme	secretion protein, probable NMB1737	Neisseria meningitidis	β	467	11354143
Orf Nme	multidrug efflux pump channel protein NMB1714	Neisseria meningitidis	β	467	11353796
Orf Pmu	unknown	Pasteurella multocida	γ 2	455	12720790
IbeB Pmu	IbeB	Pasteurella multocida	$\gamma 2$	463	12722419
PG41 Pgi	immunoreactive 52 kDa antigen PG41	Porphyromonas gingivalis	Por	462	5759281
PG53 Pgi	immunoreactive 50 kDa antigen PG53	Porphyromonas gingivalis	Por	444	5759289
PG52 Pgi	immunoreactive 51 kDa antigen PG52	Porphyromonas gingivalis	Por	455	5759287
ZapD Pmi	ZapD	Proteus mirabilis	γ1	449	3493599
AprF Pae	alkaline protease secretion protein AprF PA1248	Pseudomonas aeruginosa	γ3	481	416635

Table 2 (continued)

Abbreviation	Database description	Organism	Bacterial type	Size	GI number
Orfl Pae	probable secretion protein PA4974	Pseudomonas aeruginosa	γ3	482	11351822
OprM Pae	outer membrane protein OprM precursor PA0427	Pseudomonas aeruginosa	γ3 γ3	485	12644685
Orf 2 Pae	probable secretion protein PA3404	Pseudomonas aeruginosa	γ3	451	11351819
Orf3 Pae	probable secretion protein PA4144	Pseudomonas aeruginosa	γ_3	471	11351821
Orf4 Pae	probable outer membrane lipoprotein	Pseudomonas aeruginosa	γ3	498	11351521
on rue	precursor PA2525	1 Seutomonus derugmosa	15	170	11551501
OprJ Pae	outer membrane protein OprJ precursor PA4597	Pseudomonas aeruginosa	γ3	479	12230972
Orf5 Pae	probable outer membrane protein PA2837	Pseudomonas aeruginosa	γ3	479	11351567
Orf6 Pae	probable outer membrane protein PA2391	Pseudomonas aeruginosa	γ3	474	11351565
OprN Pae	outer membrane protein OprN precursor PA2495	Pseudomonas aeruginosa	γ3	472	11350716
Orf7 Pae	probable outer membrane efflux protein precursor PA4208	Pseudomonas aeruginosa	γ3	487	11351558
Orf8 Pae	probable outer membrane protein PA5158	Pseudomonas aeruginosa	γ3	492	11351574
Orf9 Pae	hypothetical protein PA3894	Pseudomonas aeruginosa	γ3	496	11350029
CzcC Pae	outer membrane protein precursor CzcC PA2522	Pseudomonas aeruginosa	γ3	428	11350718
Orf10 Pae	hypothetical protein PA1875	Pseudomonas aeruginosa	γ3	425	11349339
Orf11 Pae	probable outer membrane efflux protein	Pseudomonas aeruginosa	γ3	491	11351557
	precursor PA3521				
Orf12 Pae	hypothetical protein PA4592	Pseudomonas aeruginosa	γ3	493	11350212
Orf13 Pae	probable outer membrane component of multidrug efflux pump PA1238	Pseudomonas aeruginosa	γ3	482	11351556
AprF Pbr	AprF protein	Pseudomonas brassicacearum	γ3	453	9438191
OMP Pch	outer membrane protein	Pseudomonas chlororaphis	γ3	453	6013393
TliF Pfl	ABC transporter TliF	Pseudomonas fluorescens	γ3	481	4063019
CztC Pfl	CztC protein	Pseudomonas fluorescens	γ3	406	12484564
AprF Pfl	zinc-protease transporter	Pseudomonas fluorescens	γ3	471	2952089
TtgC Ppu	outer membrane channel protein	Pseudomonas putida	γ3	484	8163737
AggA Ppu	agglutination protein	Pseudomonas putida	γ3	452	281563
SrpC Ppu	outer membrane channel protein	Pseudomonas putida	γ 3	470	2605915
TtgF Ppu	outer membrane channel protein	Pseudomonas putida	γ 3	480	6912016
OprM Psy	putative outer membrane efflux protein OprM	Pseudomonas syringae	γ3	478	10764639
EprF Pto	EprF protein	Pseudomonas tolaasii	γ3	488	3646415
CzcC Rme	cobalt-zinc-cadmium resistance protein CzcC precursor	Ralstonia metallidurans	β	417	2507004
CnrC Rme	nickel and cobalt resistance protein CnrC precursor	Ralstonia metallidurans	β	418	729165
NodT1 Rle	nodulation protein T precursor	Rhizobium leguminosarum	α	467	128491
NodT2 Rle	hypothetical protein 471	Rhizobium leguminosarum	α	471	541015
NodT3 Rle	nodulation protein T precursor	Rhizobium leguminosarum	α	482	462727
TolC Rpr	outer membrane protein TolC precursor RP224	Rickettsia prowazekii	α	456	7467903
TolC Sen	outer membrane protein TolC precursor	Salmonella enteritidis	γ1	491	2495191
SilC Sty	probable outer membrane lipoprotein SilC precursor	Salmonella typhimurium	γ1	461	13633958
Orf Sty	ABC exporter outer membrane component homolog	Salmonella typhimurium	γ1	439	7467234
HasF Smar	HasA export system outer membrane protein HasF	Serratia marcescens	γ1	500	11277508
LipD Smar	LipD protein	Serratia marcescens	γ1	464	3080540
Orf Sar	putative aromatic efflux pump outer membrane protein	Sphingomonas aromaticivorans	α	483	10956846
SmeC Smal	SmeC protein	Stenotrophomonas maltophilia	$\gamma 4$	471	5764626
SmeF Smal	outer membrane protein	Stenotrophomonas maltophilia	γ 4	466	11071585
Orf Ssp	hypothetical protein slr1270	Synechocystis sp.	Cya	526	7470402
TolC EBA	predicted outer membrane protein TolC	Uncultured proteobacterium EBAC31A08	γ3	442	9971916
TolC1 Vch	outer membrane protein TolC precursor VC2436	Vibrio cholerae	γ1	438	11135318
TolC2 Vch	probable outer membrane protein TolC VC1565	Vibrio cholerae	γ1	419	11355953
Orf1 Vch	agglutination protein VC1621	Vibrio cholerae	γ1	445	11354392
Orf2 Vch	conserved hypothetical protein VC1606	Vibrio cholerae	γ1	476	11354620
Orf3 Vch	probable multidrug resistance protein VC1409	Vibrio cholerae	γ1	484	11355941
Orf Xfa	outer membrane export factor XF2586	Xylella fastidiosa	γ 4	452	11277506

of these clusters. The majority of proteins from these organisms do not cluster with any other protein. (6) Finally, all proteins from the five bacteria that do not cluster on the 16S rRNA tree do not cluster in the OMF

tree. These observations, taken together, suggest that there has been little or no late horizontal transfer of genes encoding OMFs from the α -, β -, γ - or ϵ -proteobacteria to any other group of these organisms or to the more

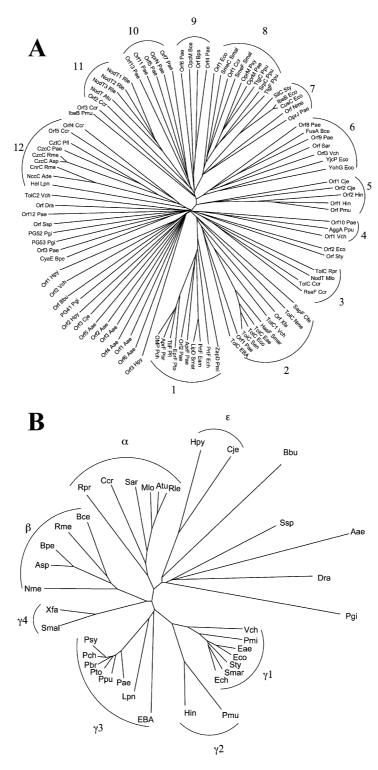


Fig. 2. The outer membrane factor (OMF) family. (A) Phylogenetic tree for currently recognized members of the OMF family. (B) 16S rRNA tree for organisms known to possess one or more OMF family homologue(s). Protein abbreviations are as indicated in Table 2.

divergent bacterial types in which these homologues are found. We suggest that unlike the FUP family, the OMF family may be an ancient one that dates back before divergence of the major bacterial kingdoms. (7) Although they do not cluster with other proteins, two of the three

paralogues from *P. gingivalis* cluster loosely together. Moreover, all of the six *A. aeolicus* paralogues are found adjacent to each other on the OMF tree, and all three *Helicobacter pylori* paralogues as well as the three *Campylobacter jejuni* paralogues are only distantly related to

Table 3 Recognized homologues of the AT family

Abb	reviation	Database description	Organism	Bacterial type	Size	GI number	S	β
	EstA Asp	esterase	Acidiphilium sp. AIU409	α	627	4704345	+	+
	Pert Bbr	pertactin precursor	Bordetella bronchiseptica	β	911	400749	+	+
	Pert Bpa	pertactin precursor	Bordetella parapertussis	β	922	129828	+	+
	BapB Bpe	BapB Protein	Bordetella pertussis	β	482	10944730	_	+
	BrkA Bpe	BrkA protein	Bordetella pertussis	β	1010	2120986	+	+
	Vag8 Bpe	Vag8 protein	Bordetella pertussis	β	915	29997419	+	+
	TcfA Bpe	tracheal colonization factor A precursor	Bordetella pertussis	β	672	2121002	+	+
	Pert Bpe	pertactin precursor	Bordetella pertussis	β	910	464364	+	+
	BapC Bpe	putative autotransporter	Bordetella pertussis	β	759	3411270	+	+
	Phg Bpe	Phg protein	Bordetella pertussis	β	418	8670938	+	+
	BapA Bpe PmpD Cmu	BapA protein polymorphic membrane protein D family	Bordetella pertussis Chlamydia muridarum	β Chla	903 1520	10944728 11362550	+	+
		TC0197						
	PmpD Ctr	probable outer membrane protein D	Chlamydia trachomatis	Chla	1531	7468993	+	+
	Orf Cab	putative 98 kDa outer membrane protein	Chlamydophila abortus	Chla	926	1657778	+	+
	Pmp Cpn	polymorphic membrane protein D family CP0897	Chlamydophila pneumoniae	Chla	1609	7468524	+	+
	Pmp10 Cpn	probable outer membrane protein Pmp10 precursor CP0303	Chlamydophila pneumoniae	Chla	928	14195016	+	+
	Pmp8 Cpn	probable outer membrane protein Pmp8 precursor	Chlamydophila pneumoniae	Chla	930	14195066	+	+
	Pmp18 Cpn	polymorphic outer membrane protein e/f family	Chlamydophila pneumoniae	Chla	946	7468498	+	+
	EspC Eco	enterotoxin EspC	Escherichia coli	γ1	1305	11527908	+	+
	Orfl Eco	putative beta-barrel outer membrane protein	Escherichia coli	γ1	1349	12513130	+	+
•	YdeK Eco ^a	YdeK protein	Escherichia coli	γ1	1325 ^b	1787788	+	-
	Orf2 Eco	hypothetical protein b1509	Escherichia coli	γ1	466	7466188	_	-
	Orf6 Eco ^a	putative ATP-binding component of a transport system	Escherichia coli	γ1	556 ^b	1787416	+	-
	Orf3 Eco	hypothetical protein b1170	Escherichia coli	γ1	347 ^b	7466147	_	+
	YfaL Eco	hypothetical 131.2 kDa protein	Escherichia coli	γ1	1250	2506696	+	+
	Sat Eco	secreted autotransporter toxin	Escherichia coli	γ1	1295	11096073	+	+
	EspP Eco	serine protease EspP	Escherichia coli	γ1	1300	10955344	+	-
	YejA Eco	hypothetical 98.4 kDa protein	Escherichia coli	γ1	1569	2507221	+	-
	Tsh Eco	Tsh protein	Escherichia coli	γ1	1377	2126101	+	
	YejO Eco	hypothetical 91.2 kDa protein	Escherichia coli	γ1	863	465619	+	-
	Orf4 Eco	putative flagellin structural protein	Escherichia coli	γ1	980	13359881	+	-
	YaiT Eco ^a	YaiT protein precursor	Escherichia coli	γ1	486	1786569	+	
	YaiU Eco	hypothetical 50.3 kDa protein	Escherichia coli	γ1	467	2495526	_	-
	TibA Eco	TibA protein	Escherichia coli	γ1	989	5305639	+	
	Orf5 Eco	probable membrane protein b1202	Escherichia coli	γ1	955	7466752	+	
	AG43 Eco	antigen 43 precursor	Escherichia coli	γ1	1039	2506898	+	-
	AidA-I Eco	adhesin AIDA-I precursor	Escherichia coli plasmid pIB6	γ1	1286	543788	+	-
	YchA Eco	adhesin AidA-I precursor	Escherichia coli plasmid F	γ1	1399 ^b	9507741	+	-
	YcbB Eco	adhesin AidA-I precursor	Escherichia coli plasmid F	γ1	1769 ^b	9507739	+	
	EaaA Eco	EaaA protein	Escherichia coli prophage P-EibA	γ1	1335	7532795	+	
	IgA Hin	immunoglobulin A1 protease precursor	Haemophilus influenzae	· γ2	1694	1170513	+	
	Hap Hin	adhesion and penetration protein precursor	Haemophilus influenzae	γ2	1394	1170167	+	
	Hap1 Hin	adhesion and penetration protein precursor	Haemophilus influenzae	γ2	1409	1170166	+	-
	Hsr Hmu	major ring-forming surface protein precursor	Helicobacter mustelae	ε	1519	1086005	+	
	VacA1 Hpy	vacuolating cytotoxin precursor	Helicobacter pylori	ε	1290	2499106	+	-
	VacA2 Hpy	vacuolating cytotoxin precursor	Helicobacter pylori	ε	1288	12230793	+	-
	Orf1 Hpy	toxin-like outer membrane protein HP0922	Helicobacter pylori	ε	2529	7465392	+	-
	Orf2 Hpy	toxin-like outer membrane protein HP0289	Helicobacter pylori	ε	2893	7465390	+	
	Orf4 Hpy ^a	hypothetical protein HP0609	Helicobacter pylori	ε	1238	7464312	+	
	Orf3 Hpy	toxin-like outer membrane protein HP0610	Helicobacter pylori	ε	1943	7465391	_	
	Orf Kas	hypothetical protein; (fragment)	Kluyvera ascorbata	γ1	652	9843779	+	
	Ssa1 Mha	serotype-specific antigen 1 precursor	Mannheimia haemolytica	γ^1 γ^2	932	401120	+	-
	Orf1 Mlo	serine proteinase	Mesorhizobium loti	α	1213	13471834	+	-
	J,,,,	*						+
	Orf2 Mlo	hypothetical protein	Mesorhizobium loti	α	1008	13471533	+	

(continued on next page)

Table 3 (continued)

	Database description	Organism	Bacterial type	Size	GI number	S	
IgA Ngo	IgA-specific serine endopeptidase precursor	Neisseria gonorrhoeae	β	1532	124244	+	
Orfl Nme	probable virulence associated protein NMA1725	Neisseria meningitidis	β	656 ^b	11354121	+	
VapA Nme	probable virulence associated protein NMA2175	Neisseria meningitidis	β	679 ^b	11354122	+	
IgA Nme	IgA-specific metalloendopeptidase NMB0700	Neisseria meningitidis	β	1815	11353752	+	
App Nme	adhesion and penetration protein NMB1985	Neisseria meningitidis	β	1457	11280386	+	
Orf2 Nme	serine-type peptidase NMB1998	Neisseria meningitidis	β	1431	11354147	+	
Orf3 Nme	Serotype-1-specific antigen, probable NMB1969	Neisseria meningitidis	β	1082	11354148	+	
Orf1 Pmu	unknown	Pasteurella multocida	γ^2	850	12722129	+	
Orf2 Pmu	unknown	Pasteurella multocida	γ2	1080	12721328	+	
NanB Pmu	sialidase NanB	Pasteurella multocida	· γ2	1070	11464736	+	
Est Pmu	Est protein	Pasteurella multocida	γ2	679	12720285	+	
Lip1 Plu	lipase1 precursor	Photorhabdus luminescens	γ3	645	729942	+	
Orf1 Pae	probable serine proteinase PA3535	Pseudomonas aeruginosa	γ3	995	11351832	+	
EstA Pae	esterase EstA PA5112	Pseudomonas aeruginosa	γ3	646	11348487	+	
Orf2 Pae	hypothetical protein PA0328	Pseudomonas aeruginosa	γ3	647	11348838	+	
PspB Pbr	PspB homolog	Pseudomonas brassicacearum	γ3	1030	9438192	+	
PspB Pfl	serine protease homologue	Pseudomonas fluorescens	γ3	1036	4115629	+	
PrtB Pfl	PrtB protien	Pseudomonas fluorescens	γ3	1036	8895500	+	
PspA Pfl	serine protease homologue	Pseudomonas fluorescens	γ3	985	4115628	+	
Ytrp Ppu	hypothetical 62.7 kDa protein (fragment)	Pseudomonas putida	γ3	592	732298	+	
EprS Pto	serine protease	Pseudomonas tolaasii	γ3	985	3646417	+	
OmpB Rae	OmpB; fragment	Rickettsia aeschlimannii	α	1617	6969926	_	
OmpB Raf	OmpB; fragment	Rickettsia africae	α	1616	6969928	_	
OmpB Rak	OmpB; fragment	Rickettsia akari	α	1619	6969930	_	
OmpB Rau	OmpB; fragment	Rickettsia australis	α	1620	6969934	_	
OmpA Rau	outer membrane protein A	Rickettsia australis	α	2106	11641393	+	
OmpB Rco	OmpB; fragment	Rickettsia conorii	α	1617	6969958	_	
OmpB Rhe	OmpB; fragment	Rickettsia helvetica	α	1604	6969966	_	
OmpB Rho	OmpB; fragment	Rickettsia honei	α	1616	6969964	_	
OmpB Rja	outer membrane protein B precursor	Rickettsia japonica	α	1656	6685710	+	
OmpB Rma	OmpB; fragment	Rickettsia massiliae	α	1616	6969944	_	
OmpB1 Rmo	OmpB; fragment	Rickettsia mongolotimonae	α	1616	6969946	_	
OmpB2 Rmo	OmpB; fragment	Rickettsia montanensis	α	1615	6969948	_	
OmpB Rpa	OmpB; fragment	Rickettsia parkeri	α	1616	6969950	_	
OmpB Rpr	outer membrane protein B precursor	Rickettsia prowazekii	α	1643	6685725	+	
Sca3 Rpr	Cell surface antigen (sca3) RP451	Rickettsia prowazekii	α	2340	7467598	+	
OmpB Rrh	OmpB; fragment	Rickettsia rhipicephali	α	1616	6969954	_	
OmpB Rri	outer membrane protein B precursor	Rickettsia rickettsii	α	1654	6685726	+	
190K Rri	190 kDa ANTIGEN precursor	Rickettsia rickettsii	α	2249	112710	+	
OmpB1 Rsp	OmpB; fragment	Rickettsia sp. A-167	α	1614	6969932	_	
OmpA Rsp	OmpA; fragment	Rickettsia sp. HLJ-054	α	1058	9789172	_	
OmpB2 Rsp	OmpB; fragment	Rickettsia sp. S	α	1615	6969956	_	
OmpB Rty	outer membrane protein B precursor	Rickettsia typhi	α	1645	3023209	+	
SapA Sty	SapA protien	Salmonella typhi	$\gamma 1$	961	10945146	+	
MisL Sty	MisL protien	Salmonella typhimurium	γ1	955	4324610	+	
ShdA Sty	ShdA protien	Salmonella typhimurium	γ1	2035	5107805	+	
ApeE Sty	outer membrane esterase	Salmonella typhimurium	γ1	656	2896133	+	
BigA Sty	putative surface-exposed virulence protein BigA	Salmonella typhimurium	γ1	1963	5081595	+	
PrtS Sma	extracellular serine protease precursor	Serratia marcescens	γ1	1045	131087	+	
PrtT Sma	extracellular serine protease precursor	Serratia marcescens	γ1	1045	266848	+	
SSP-h1 Sma	SSP-h1	Serratia marcescens	γ1	1036	3688585	+	
SSP-h2 Sma	serine proteinase h2	Serratia marcescens	γ1	1034	7435686	+	
SepA Sf1	secreted protease	Shigella flexneri	γ1	1364	13449013	+	
D: 0.01	Pic protien	Shigella flexneri 2a	γ1	1373	12643212	+	
Pic Sfl SigA Sfl	exported serine protease SigA	Shigella flexneri 2a	•	1285	7682555	+	

Table 3 (continued)

Abbreviation	Database description	Organism	Bacterial type	Size	GI number	S	β
VirG Sfl	VirG protein	Shigella flexneri plasmid pMYSH6000	γ1	1102	96922	+	+
Orfl Xfa	serine proteinase XF1851	Xylella fastidiosa	γ4	1000	11362667	+	+
Orf2 Xfa	serine proteinase XF0267	Xylella fastidiosa	γ4	999 ^b	11362665	+	+
Orf3 Xfa	serine proteinase XF1026	Xylella fastidiosa	γ4	1002 ^b	11362666	+	+
Orf4 Xfa	lipase/esterase XF0781	Xylella fastidiosa	γ4	597	11362229	+	+
YapA Ype	YapA protein	Yersinia pestis	γ1	1432	10945150	_	+
YapB Ype	YapB protein (partial)	Yersinia pestis	γ1	1052	10945152	+	+
YapC Ype	YapC protein	Yersinia pestis	γ1	638	10945154	+	+
YapD Ype	YapD protein	Yersinia pestis	γ1	1457	10945156	_	+
YapE Ype	YapE protein	Yersinia pestis	γ1	1072	10945158	+	+
YapF Ype	YapF protein	Yersinia pestis	γ1	761	10945160	+	+
YapG Ype	YapG protein	Yersinia pestis	γ1	994	10945162	+	+
YapH Ype	YapH protein	Yersinia pestis	γ1	3705	10945164	+	+

^a The two proteins within a bracket (() are believed to correspond to a passenger protein (upper protein) for the autotransporter domain localized to the C-terminus of the protein below it (lower protein).

the other proteins although loose clustering of ε -proteo-bacterial proteins is often observed. It therefore appears that these paralogues arose by early gene duplication events in their respective bacterial lineages, arguing against horizontal transfer of genes encoding OMFs.

5. The autotransporter (AT) family (TC #1.B.12)

Pathogenic Gram-negative bacteria produce a diversity of virulence factors which cross the cytoplasmic membrane via the Sec (general secretory) pathway (TC #3.A.5), and following cleavage of their N-terminal targeting sequence, they enter the periplasm of the Gram-negative bacterial cell envelope [52-55]. The C-terminal 250-300 amino acyl residues of proteins known as "autotransporters" fold and insert into the outer membrane to give rise to putative β barrel structures with 14 transmembrane β-strands (TMSs) [18,56–58]. This structure presumably forms a pore through which the N-terminal virulence factor is transported to the extracellular milieu [59]. Pore formation in lipid bilayers by one of these AT domains, that in the BrkA protein of B. pertussis (Table 3; TC #1.B.12.2.3), has been demonstrated [60]. Following its export, the precursor virulence factor is usually (but not always) proteolytically digested to release a soluble protein that can promote virulence [61].

Although the C-terminal AT domains are all homologous, they are extremely diverse in sequence [18]. Moreover, the N-terminal virulence factor domains are not all homologous. These various protein domains can (1) catalyze proteolysis, (2) serve as adhesins, (3) mediate actin-promoted bacterial motility or (4) serve as cytotoxins to animal cells (Tables 3 and 4). The intact protein, prior to processing, can vary in size between 681 and 1546 amino acyl residues. A lack of specificity for the protein transported has been demonstrated for some AT [62].

Table 3 presents the 120 members of the AT family identified in the current databases. They are derived from 20 bacterial genuses. These genuses include members of the α -, β -, γ - and ε -proteobacteria, but only one bacterial kingdom outside of the proteobacteria, the chlamydial kingdom, is represented. Several organisms possess multiple paralogues including *E. coli* (22), *Y. pestis* (8), *B. pertussis* (8), *Neisseria meningitidis* (6) and *H. pylori* (5).

The size variation observed for ATs is tremendous: the smallest homologue is Orf3 Eco (347 aas) and consists only of the AT domain. An upstream gene in the same operon (Orf6 Eco) encodes the putative passenger or toxin protein. Two E. coli homologues have 466-487 aas, and both of these (Orf2 Eco and YaiU Eco) have the putative passenger proteins (YdcK and YaiT) encoded by distinct genes mapping directly upstream of the AT domain-containing protein. H. pylori contains a large AT (Orf3 Hpy) in an operon with an upstream gene encoding a probable passenger protein (Orf4 Hpy). Thus, it appears that the passenger protein is not always covalently linked to the AT. It is possible, however, that one or more of these examples, where the passenger protein and the AT domain exist as two distinct polypeptide chains, are abnormal. For example, E. coli YaiT and YaiU are separated by the insertion sequence IS3. The largest AT homologues are YapH Ype (3705 aas) and Orf3 Mlo (3659 aas). In these and all other cases, the AT domains are at the extreme C-termini of the proteins.

The 120 AT domains were multiply aligned. No residue was fully conserved, but two residues were particularly well conserved. The G at alignment position 154 was conserved in all but seven proteins and the P at position 306 was conserved in all but three proteins. Only one of the exceptional proteins lacking a G at position 154 also lacked a P at position 306. Two other residues, G at position 349 and G at position 424 were also well (but

^b These proteins differ in length from those presented in the database due to the identification of additional regions. The database entries are believed to have resulted from incorrect initiation codon assignment or to sequencing errors.

less well) conserved. Thus, the best-conserved residues are all structural residues.

Average hydropathy, amphipathicity and similarity plots were generated from the complete AT domain multiple alignment. In agreement with previous results [18] where only 18 proteins were examined, 14 peaks of hydrophobicity

proved to exhibit amphipathic character typical of transmembrane β -strands, and all proved to be well conserved (see our web site).

The phylogenetic tree for the AT family is shown in Fig. 3A while the 16S rRNA tree for the represented organisms is shown in Fig. 3B. The latter tree reveals that a preponder-

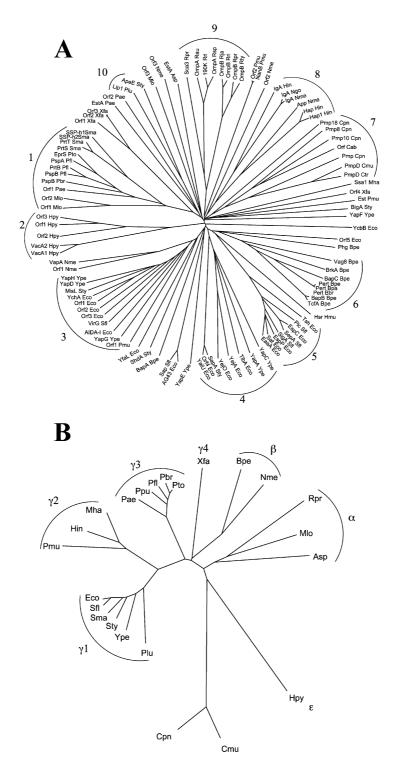


Fig. 3. The Autotransporter (AT) family. (A) Phylogenetic tree for currently recognized members of the AT family. (B) 16S rRNA tree for organisms known to possess one or more AT family homologue(s). Protein abbreviations are as indicated in Table 3.

ance of organisms known to possess AT domains are included in the four clusters of γ -proteobacteria (labeled $\gamma 1$, $\gamma 2$, $\gamma 3$ and $\gamma 4$, respectively), as well as the α , β and ε subdivisions of the proteobacteria. As noted above, only one group of non-proteobacterial organisms, the chlamydial group, exhibits AT domains.

The AT domain phylogenetic tree, shown in Fig. 3A, reveals 33 deep-rooted branches, but only 10 of these branches display protein clustering. In almost every case, each such branch includes proteins from organisms that belong to a single phylogenetic group. Thus, proteins from γ 1-proteobacteria are exclusively present on 10 branches as well as in three clusters that include proteins from other proteobacterial groups. γ 2-Proteobacterial proteins are found on six branches as well as four deep-rooted branches bearing only one protein. Two other branches include γ 1-and β -proteobacterial proteins.

 γ 3-Proteobacterial proteins are found exclusively on three branches while γ 4-proteobacterial proteins are found exclusively in two clusters. α -Proteobacterial proteins are found on three branches, and two of these include proteins only from these organisms. β -Proteobacterial proteins are found on seven branches, only one of which also has proteins from another group (γ 2). The ε -proteobacterial proteins are exclusively localized to two branches while the proteins from the chlamydial group are exclusively found on one deep-rooted branch.

Summarizing these observations, 29 of the 33 branches bear proteins from a single organismal type, with only four

Table 4
Size variation correlated with organismal source and putative function for the 10 clusters of autotransporters (see Fig. 3A)

Cluster ^a	Organisms represented ^b	Average size ± S.D. ^c	(Putative) function of substrate protein ^d
1	γ1, γ3, α	1036 ± 63	protease
2	ε	2146 ± 793	cytotoxin
3	$\gamma 1, \gamma 2$	1435 ± 804	adhesin
4	γ1	1048 ± 303	uncertain (enterotoxin) ^e
5	γ1	1329 ± 38	protease
6	β	822 ± 174	adhesin
7	Chlamydia	1198 ± 333	cytolysin
8	γ2, β	1150 ± 170	adhesin/protease
9	α	1899 ± 318	surface antigen
10	γ1, γ3	650 ± 8	hydrolase
			(lipase, esterase, peptidase)

^a Cluster refers to the phylogenetic cluster shown in Fig. 3A.

bearing proteins from two or more types (Table 4). Moreover, proteins in most clusters exhibit a uniform size and function (Table 4) showing that phylogeny provides a reliable guide to function. It seems clear that close homologues arose almost exclusively by speciation and late gene duplication events within a single organism; horizontal transfer of genes encoding ATs between distant organismal types was a rare evolutionary event.

6. The two-partner secretion (TPS) family (TC #1.B.20)

The first member of the TPS family to be characterized was the ShlB (HlyB) protein of *Serratia marcescens*, which exports the ShlA hemolysin from the periplasm of the Gram-negative bacterial envelope into the external medium [63]. ShlA reaches the periplasm by export from the cytoplasm via the GSP or IISP (TC #3.A.5). ShlB and some, but not all, TPS homologues include domains with both an outer membrane export channel and a "hemolysin activator." ShlB activates ShlA by derivatization with phosphatidyl ethanolamine [64].

Several ShlB homologues have been functionally characterized [65–68]. The channel activities of some of these homologues have been demonstrated [69,70], and topological features of these putative β -barrel porins have been studied. One such protein, FhaC of *B. pertussis*, exhibits a surface-exposed N-terminus and an odd number of β -strands with large surface loops and small periplasmic loops [70,71].

Substrates of bacterial TPS family exporters include ${\rm Ca^{2}}^+$ -independent cytolysins, an iron acquisition protein and several adhesins. Specificity with respect to particular protein substrates has been demonstrated [66]. The hallmarks of TPS systems are the presence of (1) an N-proximal module where specific secretion signals in the substrate protein are found and (2) a β -barrel channel (TpsB) homologue [19]. Usually, the genes encoding these two proteins occur within an operon. After transport of the unfolded protein across the cytoplasmic membrane via the GSP, the substrate protein probably folds in the periplasm and/or on the periplasmic surface of the outer membrane before it is exported via the TPS porin [19].

Sequenced protein members of the TPS family retrieved from the current databases are listed in Table 5. Of the five outer membrane protein-translocating porin types characterized in this report, TPS family members are the most widespread in nature even though there are fewer sequenced members than in the OMF, AT and secretin families. Thus, only 77 TPS homologues were identified, but in addition to all of the major subgroups of proteobacteria except the δ subgroup, they were found in chlamydia, cyanobacteria, D. radiodurans, A. aeolicus, Fusobacterium necrophorum and T. maritima. Although homologues were not identified in archaea, they were represented in the animal, plant and fungal kingdoms of eukaryotes.

^b All Greek letter entries refer to the category of proteobacteria from which the proteins are derived.

 $^{^{\}rm c}$ Sizes are expressed in numbers of amino acyl residues \pm S.D.

 $^{^{\}rm d}$ The known or postulated functions of the N-terminal substrate protein domains that are believed to be exported via the C-terminal β -barrel-forming autotransporter domains are provided. Outside of the 10 major clusters can be found several of the functional types described for the major clusters as well as other functional types such as putative ATPases, flagellins and sialidases (see Table 3).

^e N-terminal substrate protein domains in cluster 4 are sequence divergent and are annotated in the databases as (a) adhesins, (b) proteases, (c) ATP-binding proteins and (d) flagellins. However, based on our analyses, some of these assignments are likely to be incorrect.

Table 5
Recognized homologues of the TPS family

Abbreviation	Database description	Organism	Bacterial type	Size	GI number
Prokaryotic					
Omp Aae	outer membrane protein	Aquifex aeolicus	Aqu	778	7520765
Orf Aae	hypothetical protein aq_050	Aquifex aeolicus	Aqu	861*	7517352
FhaC Bbr	FhaC protein	Bordetella bronchiseptica	β	583	6650632
FhaC Bpe	hemolysin activator-like protein FhaC precursor	Bordetella pertussis	β	584	462082
Omp1 Bme	OMP1 precursor	Brucella melitensis	α	782	1262291
Orfl Cje	outer membrane protein Cj0129c	Campylobacter jejuni	ε	739	11346784
Orf2 Cje	probable outer-membrane protein Cj0975	Campylobacter jejuni	ε	574	11347039
Orfl Ccr	outer membrane protein	Caulobacter crescentus	α	769	13423368
Orf2 Ccr	conserved hypothetical protein	Caulobacter crescentus	α	628	13423000
Orf3 Ccr	hypothetical protein	Caulobacter crescentus	α	513	13421807
Orf Cmu	outer membrane protein, probable TC0512	Chlamydia muridarum	Chla	792	11362439
Omp85 Ctr	probable omp85 analog	Chlamydia trachomatis	Chla	792	7468991
Omp85 Cpn	Omp85 analog	Chlamydophila pneumoniae	Chla	790	7468478
Orf Dra	outer membrane protein	Deinococcus radiodurans	Dei	846	7473239
EthB Eta	activation/secretion protein EthB	Edwardsiella tarda	γ1	559	11360479
Orfl Eco	hypothetical protein b0177	Escherichia coli	γ1	810	2506737
Orf2 Eco	putative outer membrane transporter	Escherichia coli	γ1	539	12514411
Orf3 Eco	hypothetical 64.8 kDa protein	Escherichia coli	γ 1	577	732290
Orf Fne	unknown; fragment	Fusobacterium necrophorum	Fus	338	13469803
LspB Hdu	hemolysin accessory protein homolog (Fragment)	Haemophilus ducreyi	γ2	474	7467544
HhdB Hdu	hemolytic protein hhdB precursor	Haemophilus ducreyi	γ2	532	7467546
D15 Hin	protective surface antigen D15 precursor	Haemophilus influenzae	γ^2	797	1169202
HxuB2 Hin	heme/hemopexin utilization protein B precursor	Haemophilus influenzae	γ2	565	1170439
HxuB1 Hin	heme/hemopexin utilization protein B precursor	Haemophilus influenzae	γ 2	565	1170438
Orfl Hin	putative accessory processing protein	Haemophilus influenzae	γ^2	545	475772
Orf2 Hin	hypothetical protein HI0698 precursor	Haemophilus influenzae	γ 2	578	1176923
D15 Hpy	protective surface antigen D15	Helicobacter pylori	ε	916	7465335
Orfl Mlo	outer membrane protein	Mesorhizobium loti	α	794	13470835
Orf2 Mlo	hypothetical protein	Mesorhizobium loti	α	626*	13471632
Omp85 Ngo	outer membrane protein	Neisseria gonorrhoeae	β	792	1766042
HecB1 Nme	hemolysin activation protein HecB, NMB1762	Neisseria meningitidis	β	595	11353175
HecB2 Nme	hemolysin activation protein HecB, NMB1780	Neisseria meningitidis	β	580	11353176
Orfl Nme	hemolysin activator-related protein NMB0496	Neisseria meningitidis	β	559	7413434
Omp85 Nme	outer membrane protein Omp85 NMB0182	Neisseria meningitidis	β	797	11279714
Orf2 Nme	conserved hypothetical protein NMB2134	Neisseria meningitidis	β	635	11282853
LspB1 Pmu	LspB protein	Pasteurella multocida	γ 2	576*	12720262
LspB2 Pmu	LspB protein	Pasteurella multocida	γ 2	573*	12720265
Orfl Pmu	putative hemolysin activator-like protein; fragment	Pasteurella multocida	γ 2	482	7716521
Orf2 Pmu	unknown	Pasteurella multocida	$\gamma 2$	791	12722432
Oma87 Pmu	outer membrane antigen Oma87	Pasteurella multocida	$\gamma 2$	789	1401350
Orf3 Pmu	unknown	Pasteurella multocida	γ 2	586	12722231
HecB Pch	HecB protein	Pectobacterium chrysanthemi	γ1	558	1772622
Orf Plu	outer membrane antigen	Photorhabdus luminescens	γ1	797	5689866
HpmB Pmi	hemolysin activator protein precursor	Proteus mirabilis	γ1	561	123203
Orfl Pae	conserved hypothetical protein PA0040	Pseudomonas aeruginosa	γ3	562	11347607
Orf2 Pae	hypothetical protein PA2463	Pseudomonas aeruginosa	γ3	565	11349581
Orf3 Pae	probable outer membrane protein PA3648	Pseudomonas aeruginosa	γ3	797	11351570
Orf4 Pae	hypothetical protein PA4540	Pseudomonas aeruginosa	γ3	545	11350202
Orf5 Pae	hypothetical protein PA4624	Pseudomonas aeruginosa	γ3	568	11350221
Orf6 Pae	hypothetical protein PA0692	Pseudomonas aeruginosa	γ3	544	11348954
Orf7 Pae	conserved hypothetical protein PA2543	Pseudomonas aeruginosa	γ3	579	11347901
Orf8 Pae	hypothetical protein PA3339	Pseudomonas aeruginosa	γ3	728	11349874
Omp1 Rpr	outer membrane protein Omp1 RP160	Rickettsia prowazekii	α	768	7467902
HlyB Smar	hemolysin activator protein precursor	Serratia marcescens	γ1	557	123205
Orf Ssp	hypothetical protein slr1661	Synechocystis sp.	Cyan	654	7470479
Iap75 Ssp	chloroplast import-associated channel IAP75	Synechocystis sp.	Cyan	861	7469855
Orf Tma	hypothetical protein	Thermotoga maritima	The	711	7462447
Orfl Vch	surface antigen VC2252	Vibrio cholerae	γ1	803	11279712
Orf2 Vch	conserved hypothetical protein VC2548	Vibrio cholerae	γ1	582	11282638
Orf3 Vch	hypothetical protein VC1749	Vibrio cholerae	γ1	408	11346255

Table 5 (continued)

Abbreviation	Database description	Organism	Bacterial type	Size	GI number
Prokaryotic					
Orf Xor	putative outer membrane protein	Xanthomonas oryzae	γ4	593	11693113
Orf1 Xfa	outer membrane hemolysin activator protein XF2550	Xylella fastidiosa	γ4	597	11362429
Orf2 Xfa	outer membrane antigen XF1046	Xylella fastidiosa	γ4	784	11279711
Orf3 Xfa	conserved hypothetical protein XF1231	Xylella fastidiosa	γ4	617	11360753
Eukaryotic					
Orf1 Ath	gene_id: MOP10.6—unknown protein	Arabidopsis thaliana	Pl	524	10178129
Orf2 Ath	unknown protein	Arabidopsis thaliana	Pl	520	6016688
Orf3 Ath	unknown protein	Arabidopsis thaliana	Pl	732	13430586
Orf4 Ath	hypothetical protein F26G5.110	Arabidopsis thaliana	Pl	435	11357663
Orf5 Ath	outer envelope membrane protein homolog T6H20.230	Arabidopsis thaliana	P1	818	7487986
Orf Cel	hypothetical 43.2 kDa protein C34E10.1	Caenorhabditis elegans	An	398	1176527
Orf Dme	hypothetical protein CG7639	Drosophila melanogaster	An	463	12585512
CGI51 Has	protein CGI-51	Homo sapiens	An	469	12643329
Oep75 Psa	outer envelope membrane protein OEP75 precursor	Pisum sativum	Pl	809	1363492
Orf Sce	Ynl026wp	Saccharomyces cerevisiae	Fu	484	6324302
Orf Spo	hypothetical 51.8 kDa protein C17C9.06	Schizosaccharomyces pombe	Fu	475	1723565

^{*} These proteins are reported to differ in length from that presented due to incorrect initiation codon assignment or sequencing errors.

Examination of Table 5 reveals an interesting distribution of paralogues. Among bacteria: *P. aeruginosa* (8) > *Pasteurrella multocida* (6) > *H. influenzae* (5) > *N. meningitidis* (4) > *E. coli, V. cholera, X. fastidiosa* and *C. crescentus* (3). *Synechocystis* sp., *A. aeolicus* and *C. jejuni* each have two, while chlamydial species, *H. pylori, Rickettsia prowazekii* and *T. maritima* only have one. Several divergent bacterial species with fully sequenced genomes lack homologues. These include all Gram-positive bacteria and spirochetes. Among eukaryotes, only *Arabidopsis thaliana* has more than one paralogue, but it has five. *Saccharomyces cerevisiae, S. pombe, Caenorhabditis elegans, Drosophila melanogaster* and *Homo sapiens* each have one.

The sizes of the precursor proteins are tabulated in Table 5. A large fraction of these homologues are in the 500–800 amino acyl residue range, but many are larger, the largest (from *Zymomonas mobilis*) having 1056 residues and the second largest (from *H. pylori*) having 916 residues. While only five proteins have 500–600 aas, 21 have 600–700, seven have 700–800 and only two proteins are larger. The animal and fungal proteins, and one plant protein are among the smallest homologues found (398–484 aas), although most of the plant proteins are of sizes comparable to those found in bacteria (520–818 aas). The size ranges and organismal sources of the six primary clusters (Fig. 4) are presented in Table 6.

The multiple alignment revealed at least 20 clear regions of probable amphipathic β -strands. This observation is in agreement with the documented suggestion that these proteins exist as pore-forming β -barrels. No residue was fully conserved in all of the homologues. However, several features were noteworthy: (1) the N-terminal regions were strongly divergent in sequence, and were consequently excluded from the phylogenetic analyses reported below. (2) Following about 16 putative β -strand regions and pre-

ceding the last four such putative strands was a region of high conservation with the following consensus sequence:

(X = any residue; Hy = any hydrophobic residue)

The R G (Y F) motif was conserved in all but nine of the homologues, and in each of these nine proteins, at least two of these three residues were conserved.

The phylogenetic tree for the TPS family is shown in Fig. 4A, and the 16S rRNA tree for represented organisms is shown in Fig. 4B. The latter exhibits organismal clustering as expected with the proteobacteria clustering according to subtype, the six-sequence divergent non-proteobacteria branching from points near the center of the prokaryotic part of the tree, and the eukaryotic part of the tree dividing into three groups: plants, animals and fungi, as expected.

The TPS family tree (Fig. 4A) reveals 20 deep-rooted branches, six of these bearing multiple proteins. One cluster (cluster 1) includes one of the two cyanobacterial homologues plus the outer chloroplast envelope protein, Oep75 of *P. sartorium*, a component of the chloroplast envelope protein import translocase (CEPT) family (TC #3.A.9) [72–76]. Its channel activity has been demonstrated in an artificial lipid bilayer membrane [77]. It is interesting that three *Arabidopsis* paralogues are found in this cluster, but that only one of the two *Synechocystis* paralogues is found therein.

All remaining eukaryotic proteins are found in cluster 2. Except for the two-cluster 2 *A. thaliana* paralogues, eukaryotes with fully sequenced genomes each exhibit a single representative protein in this cluster. Surprisingly, the *C. elegans* protein does not cluster with the other animal proteins. Based on this criterion, it is apparently not an orthologue of the *Drosophila* and human proteins.

Cluster 3 is a large cluster of proteobacterial proteins where no organism has more than one representative pro-

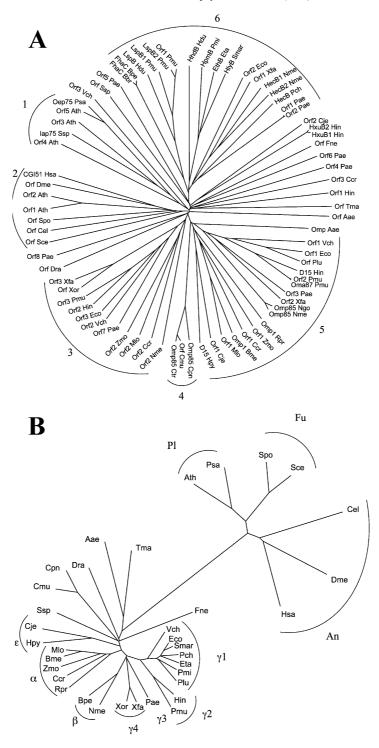


Fig. 4. The two-partner secretion (TPS) family. (A) Phylogenetic tree for currently recognized members of the TPS family. (B) 16S rRNA tree for organisms known to possess one or more TPS family homologue(s). Protein abbreviations are as indicated in Table 5. Pl, plants; Fu, fungi; An, animals.

tein, and every proteobacterial subgroup ($\gamma 1$, $\gamma 2$, $\gamma 3$, $\gamma 4$, α and β) except δ and ε is represented (Table 6). All of the proteins in cluster 3 exhibit phylogenetic clustering as do the corresponding 16S rRNAs (compare Fig. 4A and B). Further, they are all in the same size range (577–635) except for Orf2 Zmo, which is much larger due to an N-

terminal extension of about 200 residues (Tables 5 and 6). Therefore, they are all probably orthologues serving the same function.

Cluster 4 consists of three chlamydial proteins, and no chlamydial protein lies outside of this cluster. They are undoubtedly orthologues.

Table 6
Size variation for the six clusters within the TPS family (see Fig. 4A)

Cluster ^a	Organisms represented ^b	Average size ± S.D.c	(Putative) function of substrate protein
1	Eukaryotes and cyanobacteria	805 ± 54	chloroplast proteins
2	Eukaryotes	476 ± 42	?
3	γ 1, γ 2, γ 3, γ 4, α , β	612 ± 47	?
4	Chlamydia	791 ± 1	?
5	γ 1, γ 2, γ 3, γ 4, α , β , ϵ	808 ± 70	Zn ²⁺ -metaloproteases
6	$\gamma 1, \gamma 2, \gamma 3, \gamma 4, \beta$	568 ± 18	cytolysins/adhesins

- ^a Cluster refers to the phylogenetic cluster shown in Fig. 4A.
- ^b All Greek letter entries refer to the category of proteobacteria from which their proteins are derived.
 - ^c Sizes are expressed in numbers of amino acid residues \pm S.D.

Cluster 5 is a second large cluster of exclusively proteo-bacterial proteins. The subgroups represented are $\gamma 1$, $\gamma 2$, $\gamma 3$, $\gamma 4$, β , α , and ε (Table 6). The two very closely related proteins from *P. multocida* are from two different strains. No organism has more than one representative protein in this cluster, and clustering is according to organismal type (i.e., 16S rRNA). Finally, all but three of these proteins are in the same size range (769–810). The exceptions are D15 Hpy, which has an extra internal loop, Orf1 Cje, which has a deletion in a loop, and Orf1 Zmo, which has a 300 residue N-terminal hydrophilic extension. We postulate that like cluster 3, cluster 5 consists exclusively of orthologues serving a common function.

Cluster 6 is a third large cluster of exclusively proteo-bacterial proteins. The subgroups represented are $\gamma 1$, $\gamma 2$, $\gamma 3$, $\gamma 4$ and β . In contrast to clusters 3 and 5, clustering is not according to organismal phylogeny. Nevertheless, all of these proteins are in the same size range (532–597) except for LspB Hdu (474) and Orf1 Pmu (482) (see Table 6). Further, within cluster 6, there are three close paralogues from *P. multocida*, two close paralogues from *N. meningitidis* and two close paralogues from *P. aeruginosa*.

Examining paralogues, we find that except for Orfs 1 and 2, all P. aeruginosa paralogues are very divergent in sequence. Again, excluding HxuB1 and HxuB2 of H. influenzae, all paralogues in this organism are very divergent in sequence. Moreover, the two paralogues in H. ducrevi do not have counterparts in H. influenzae. N. meningitidis has two close paralogues (HecB1 and HecB2) in cluster 6 with its other two paralogues in clusters 3 and 5. Similarly, P. aeruginosa has two very close paralogues in cluster 6 but one each in clusters 3 and 5. Finally, the three E. coli paralogues and the three X. fastidiosa paralogues are in clusters 3, 5 and 6. It appears that while there has been evolutionary pressure to duplicate cluster 6 genes, there has been no pressure to duplicate cluster 3 and 5 genes. Since some proteobacteria with fully sequenced genomes are not represented in these clusters, there must have been a tendency for some of these organisms to lose one or another of these paralogues during evolution.

7. The outer membrane secretin (Secretin) family (TC #1.B.22)

The Secretin family consists of a group of Gram-negative bacterial outer membrane proteins that form multimeric pores through which macromolecules, usually proteins, can pass [78–80]. These proteins form homomultimeric ring structures, 10–20 subunits per complex, with large central pores (inner diameters of 50–100 Å). One secretin, PilQ of *N. meningitidis*, is a dodecamer with 12 identical subunits arranged in a ring [81]. Secretins are large proteins (420–750 amino acyl residues) consisting of two domains: an N-terminal periplasmic domain (the first 280 residues of *Pseudomonas* XcpQ proteins) and a C-terminal "homology" domain that is embedded in the outer membrane. The C-terminal "homology" domains of secretins are exclusively responsible for channel formation [82].

Secretins function in type II protein secretion (TC #3.A.5) (e.g., PulD of K. oxytoca), type III protein secretion (TC #3.A.6) (e.g., the hypersensitivity response secretin (HrpH) of *P. syringiae*), host cell invasion (e.g., the protein secretin InvG of S. typhimurium), competence (e.g., competence protein E (ComE) of *H. influenzae*), fimbrial protein export and assembly (e.g., the fimbrial assembly protein (PilQ) of *P. aeruginosa*) and phage assembly (e.g., the gene IV protein of bacteriophage f1) [10,83]. In V. cholerae, the secretin of the type III secretion system, EpsD, which exports cholera toxin, also exports the filamentous phage, CTXQ, the genome of which encodes cholera toxin [84,85]. Filamentous phage are simultaneously secreted and assembled with coat proteins. The enteropathogenic E. coli secretin, BfpB, exports pilin subunits and several PEC proteins, and renders cells sensitive to the antibiotic, vancomycin [86].

Table 7 presents the currently sequenced members of the Secretin family. Ninety-six proteins were identified. These proteins are primarily from Gram-negative bacteria although several are from plasmids and phage of E. coli and P. aeruginosa, and one is from the purported Gram-positive D. radiodurans, which has two membranes of similar composition. Organisms with large numbers of secretin paralogues include P. aeruginosa with eight paralogues, E. coli and M. loti, both with six paralogues, V. cholerae with five and Pectobacterium chrysanthemi with four. Many additional organisms have two or three (Table 7). There is tremendous size variation, the three smallest being in the 220-234 aa size range (all from members of the rhizobial group), and the three largest being in the 912-919 aa size range (all from members of the chlamydial group). Analyses of the DNA sequences of the encoding genes convinced us that these size assignments are essentially correct. Although one P. aeruginosa protein is of only 273 aas, and the Myxococcus xanthus protein is of 901 aas, almost all other homologues are in the 400-800 aa size range (Table 7).

A quick look at the organisms bearing secretin homologues reveals that all classes of proteobacteria as well as

Table 7 Recognized homologues of the Secretin family

Abbreviation	Database description	Organism	Bacillus type	Size	GI number
ComQ Asp	putative outer membrane protein ComQ	Acinetobacter sp.	γ3	723	12642803
RcpA Aac	Rough colony protein A	Actinobacillus actinomycetemcomitans	$\gamma 2$	460	4768955
ExeD Ahy	general secretion pathway protein D precursor	Aeromonas hydrophila	γ1	678	1170050
Orf Ahy	S-protein secretion D	Aeromonas hydrophila	γ1	737	2126227
ExeD Asa	general secretion pathway protein D precursor	Aeromonas salmonicida	γ1	678	1170051
GspD Aae	general secretion pathway protein D	Aquifex aeolicus	Aqu	625	7514941
Orf Aae	conserved hypothetical protein	Aquifex aeolicus	Aqu	705	7514521
Orf fd	gene IV protein	Bacteriophage fd (E. coli)	γ1	426	9626336
Orf I2-2	gene IV protein	Bacteriophage I2-2 (E. coli)	γ1	428	9625382
Orf If1	gene IV protein	Bacteriophage If1 (E. coli)	γ1	429	9630755
Orf Ike	gene IV protein	Bacteriophage Ike (E. coli)	γ1	437	9626242
Orf M13	gene IV protein	Bacteriophage M13 (E. coli)	γ1	426	138050
Orf Pf3	unknown protein	Bacteriophage Pf3	γ3	430	9626321
		(Pseudomonas aeruginosa)			
RhcC Bja ^a	RhcC1	Bradyrhizobium japonicum	α	230	12620518
RhcC1 Bja	RhcC2	Bradyrhizobium japonicum	α	484	12620550
GspD Bce	GspD	Burkholderia cepacia	β	783	11559475
GspD Bps	general secretory pathway protein D	Burkholderia pseudomallei	β	750	4139236
Orf Cje	probable type II protein secretion system D protein	Campylobacter jejuni	ϵ	472	11347194
GspD Ccr	general secretion pathway protein D	Caulobacter crescentus	α	687	13421292
CpaC Ccr	CpaC	Caulobacter crescentus	α	560	7208425
SctC Cmu ^b	type III secretion protein	Chlamydia muridarum	Chla	918	11362809
GspD Cmu	general secretion pathway protein D	Chlamydia muridarum	Chla	759	11360973
YopC Ctr	secretion protein D	Chlamydia trachomatis	Chla	921	7469078
Orf Ctr	probable general secretion protein D	Chlamydia trachomatis	Chla	760	7468922
SctC Cpn	type III secretion protein	Chlamydophila pneumoniae	Chla	919	7468594
GspD Cpn	general secretion pathway protein D	Chlamydophila pneumoniae	Chla	754	7468239
Orf Cli	exporter protein	Chlorobium limicola	Chlo	461	10956078
GspD Dra	probable general secretion pathway protein D	Deinococcus radiodurans	Dei	740	7473495
HrcC Eam	HrcC	Erwinia amylovora	γ1	676	1336093
GspD Eco	probable general secretion pathway protein D	Escherichia coli	γ1	654	1170052
EtpD Eco	type II secretion pathway-related protein etpD	Escherichia coli	γ1	642	7466966
EivG Eco	type III secretion apparatus protein	Escherichia coli	γ1	567	12517375
HofQ Eco	protein transport protein HofQ precursor	Escherichia coli	γ1	412	1170332
EscC Eco	type III secretion system EscC protein	Escherichia coli	γ1	512	3414909
BfpB Eco	BfpB	Escherichia coli	γ1	552	1314252
PilN1 Eco	Lipoprotein	Escherichia coli plasmid ColIb-P9	γ1	560	9507539
PilN2 Eco	PilN	Escherichia coli plasmid R721	γ1	547	10955502
ComE Hin	competence protein E precursor	Haemophilus influenzae	γ2	445	1169008
PulD Kpn	general secretion pathway protein D precursor	Klebsiella pneumoniae	γ1	660	131592
LspD Lpn	type II outer membrane secretin	Legionella pneumophila	γ3	678	13625380
GspD Mlo	general secretion protein D	Mesorhizobium loti	α	708	13475694
Orfl Mlo	pilus assembly protein	Mesorhizobium loti	α	481	13475417
Orf2 Mlo	type II secretion system protein	Mesorhizobium loti	α	432	13475294
CpaC Mlo	exporter protein	Mesorhizobium loti	α	471	13474660
Orf3 Mlo	probable secretory protein	Mesorhizobium loti	α	461	13471032
NolW Mlo ^a	nodulatin protein NolW	Mesorhizobium loti	α	220	13475297
PilQ Mxa	PilQ	Myxococcus xanthus	δ	901	3978519
PulD Ngo	outer membrane protein Omc precursor	Neisseria gonorrhoeae	β	711	548422
PilQ Ngo	PilQ protein	Neisseria gonorrhoeae	β	720	2120880
Orfl Nme	pilus secretin	Neisseria meningitidis	β	761	11353851
Orf2 Nme	secretin precursor	Neisseria meningitidis	β	766	4027986
HrcC Pst	HrcC	Pantoea stewartii	γ1	677	9885640
ComE Pmu	ComE	Pasteurella multocida	γ2	444	12721580
RcpA Pmu	RcpA	Pasteurella multocida	γ^2	470	12721161
OutD Pca	OutD protein	Pectobacterium carotovorum	γ1	649	479227
OutD1 Pch	general secretion pathway protein D precursor	Pectobacterium chrysanthemi	γ1 γ1	710	399825
OutD2 Pch	general secretion pathway protein D precursor	Pectobacterium chrysanthemi	γ1 γ1	712	399792
OutD3 Pch	general secretion pathway protein D precursor	Pectobacterium chrysanthemi	γ1 γ1	650	2506491
HrcC Pch	HrcC	Pectobacterium chrysanthemi	γ1 γ1	691	1772618

Table 7 (continued)

Abbreviation	Database description	Organism	Bacillus	Size	GI number
			type		
XqhA Pae	Secretion protein XqhA	Pseudomonas aeruginosa	γ3	776	11352555
PilQ Pae	Fimbrial assembly protein PilQ precursor	Pseudomonas aeruginosa	γ3	714	12230952
Orf1 Pae	probable type II secretion system protein	Pseudomonas aeruginosa	γ3	759	11352405
PscC Pae	PscC	Pseudomonas aeruginosa	γ3	600	1781385
Orf2 Pae	probable type II secretion system protein	Pseudomonas aeruginosa	γ3	416	11352412
Orf3 Pae	probable type II secretion system protein	Pseudomonas eruginosa	γ3	803	11352402
Orf4 Pae	hypothetical protein	Pseudomonas aeruginosa	γ3	273	11349624
XcpQ2 Pal	outer membrane secretion protein Q	Pseudomonas alcaligenes	γ3	649	3978475
XcpQ Ppu	protein secretion protein xcpQ precursor	Pseudomonas putida	γ3	591	2120685
HrcC Psy	HrcC	Pseudomonas syringae	γ3	700	3228547
HrpH Psy	hypersensitivity response secretion protein HrpH precursor	Pseudomonas syringae	γ3	701	6016255
HrpA Rso	hypersensitivity response secretion protein	Ralstonia solanacearum	β	568	2833448
NolW Rfr ^a	nodulation protein NolW	Rhizobium fredii	α	234	462733
		(Sinorhizobium fredii)			
Orf Rsp	hypothetical 44.3 kDa protein	Rhizobium sp.	α	423	2495099
PilN Sty ^c	PilNa	Salmonella typhi	γ1	553	7274588
InvG1 Sty	InvG protein precursor	Salmonella typhimurium	γ1	562	1170574
InvG2 Sty	invasion protein invG	Salmonella typhimurium	γ1	563	2126157
SpiA Sty	SpiA	Salmonella typhimurium	γ1	497	1498307
MxiD Sfl	outer membrane protein MxiD precursor	Shigella flexneri	γ1	566	13449092
MxiD Sso	outer membrane protein MxiD precursor	Shigella sonnei	γ1	566	2495097
GspD Ssp	general secretion pathway protein D	Synechocystis sp.	Cya	785	7469324
ComE Tma	hypothetical protein	Thermotoga maritima	The	1285	7462739
GspD Tma	general secretion pathway protein D	Thermotoga maritima	The	387	7462809
EspD Vch	general secretion pathway protein D precursor	Vibrio cholerae	γ1	674	11182423
Orfl Vch	fimbrial assembly protein	Vibrio cholerae	γ1	578	11354911
MshD Vch	mannose-sensitive hemagglutinin D	Vibrio cholerae	γ1	559	791156
Orf2 Vch	similar to gene IV protein	Vibrio cholerae	γ1	500	9630770
TcpC Vch	toxin corregulated pilus biosynthesis outer	Vibrio cholerae	γ1	489	267086
	membrane protein C				
XpsD Xca	general secretion pathway protein D precursor	Xanthomonas campestris	γ4	759	129748
HrpA Xca	hypersensitivity response secretion protein	Xanthomonas campestris	γ4	607	462304
HrpA Xor	HrpA	Xanthomonas oryzae	γ4	605	7350909
Orf1 Xfa	general secretory pathway protein D precursor	Xylella fastidiosa	γ4	775	11360974
Orf2 Xfa	fimbrial assembly protein	Xylella fastidiosa	γ4	637	11360960
YscC Yet	Yop proteins translocation protein C precursor	Yersinia enterocolitica	γ1	607	10955572
YsaC Yet	YsaC	Yersinia enterocolitica	γ1	525	8996028
Ysc Ype	Yop proteins translocation protein C homolog	Yersinia pestis	γ1	607	10955619

^a These three nodulation proteins were excluded from the phylogenetic tree because of their small sizes and lack of homology with the most highly conserved domains in all other secretin.

several others (*Aquifex*, *Chlamydia*, *Chlorobium*, *Deinococcus*, *Synechocystis* and *Thermatoga*) are represented. Of divergent bacteria with fully sequenced genomes, only *Deinococcus* and *Synechocystis* have a single secretin while *A. aeolicus*, all of the chlamydial species, and *T. maritima* have two paralogues. It is interesting to note that all phage-encoded secretins are in a single size range (420–437 aas), while the two plasmid-encoded proteins mentioned above are similarly of about the same size (560 and 547 aa, respectively). As will be discussed below, size differences correlate with phylogenetic grouping and functional type (Table 8).

In constructing the multiple alignment, three sequences were omitted. These proteins were the three short proteins, NolW Mlo, NolW Rfr and RhcC Bja. They aligned at

alignment positions 280–608 in the multiple alignment presented on our ALIGN web site. These three proteins lack the most conserved regions of all other secretins. Examination of the genes encoding these proteins led us to conclude that the size assignments are essentially correct. Although these proteins are believed to function in nodulation, their biochemical functions are unknown.

Examination of the multiple alignment of the remaining 93 secretins revealed that no residue is fully conserved. However, one G is conserved in all but one protein (alignment position 1123; see below). The major size differences between the various secretins occur in the N-terminal 800 residue positions which are not present in all homologues. However, residue positions 813–1171 are represented in

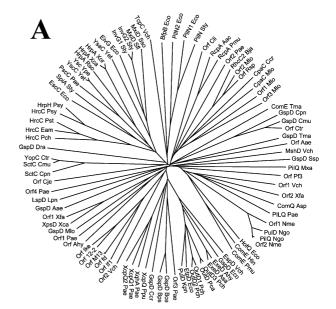
^b The database entry for this protein indicated a size of 672 aas. However, comparison with the *C. trachomatis* and *C. pneumoniae* homologues revealed that the initiation codon had been incorrectly assigned. The proposed length for this protein in 918 aas and the initiation codon encodes a valine.

^c The database entry for this protein indicates a size of 277aas. The nucleotide sequence was translated in all three reading frames, and the translated sequences were tested for homology and accuracy by using the BlastX program. The protein used in our analysis is 553 aas long.

every homologue except the three Rhizobial proteins mentioned above, and this short region proved to be the best conserved (see our ALIGN web site). Nine or ten well-conserved probable amphipathic β -strands were identified within this region.

Three extended, well-conserved, consensus sequences were derived from the three most conserved regions as follows:

- 1. (L I V)₂ X₂ L D (L I V) (P A R) X₂ Q V X (L I V) E A X (L I V)₂ E (alignment positions 813–833).
- (L I V F W) X (L I V M A) X (L I V) (S T N Q) A L X₇ (L I V)₂ (S T) X P X (L I V)₂ T (alignment positions 972–995).
- (L I V) X (L I V) X₂ G X (S T) (L I V)₃ G G* (L I V)₂ X₁₀ V P (L)₂ (G S) D (L I V) P (L I V)₂ G X L F R X₁₀ (L I V M F)₅ X P X (L I V)₂ (alignment positions 1111–1171).


The most conserved residue, the G* in consensus sequence #3 is conserved in all proteins except TcpC Vch (see Table 6).

The phylogenetic tree for the Secretin family is shown in Fig. 5A, and the corresponding 16S rRNA tree is shown in Fig. 5B. Ten clusters of secretins as well as 11 branches bearing a single protein were observed. Two of these clusters (clusters 4 and 8) bear only chlamydial proteins. One cluster (cluster 10) bears all of the phage proteins. Finally, all remaining clusters bear only proteobacterial proteins with the exception of cluster 5, which also bears a sequence divergent protein from the green bacterium *Chlorobium*. All other proteins from bacteria outside of the proteobacterial group are found singly on branches that lack near homologues. Thus, there is no evidence for horizontal transfer of genes encoding secretins between the major bacterial kingdoms.

Table 8 summarizes much of the phylogenetic data presented in Fig. 5A. Comparing Fig. 5A and B, clusters 1–3, 5–7 and 9 include proteobacterial proteins that in general do not follow the phylogenies of the organisms. Moreover, with the exception of cluster 9, single organisms bear multiple paralogues within each of these clusters. These facts must reflect late gene duplication events and/ or horizontal transfer of genes between proteobacteria. They show that the proteins in these clusters do not exhibit simple orthologous relationships. Only the two chlamydial clusters (clusters 4 and 8) do exhibit the expected orthologous relationships. We can presume that all three proteins in each of these chlamydial clusters serve the same function.

The third column in Table 8 provides the average sizes of the proteins in the various clusters \pm S.D., while column 4 indicates their presumed functions. It can be seen that each phylogenetic cluster exhibits a distinctive size that may correlate with function. Thus,

(1) Four clusters (1, 2, 4 and 9) include proteins in the size range 665–758 aas, and these secretins are probably all

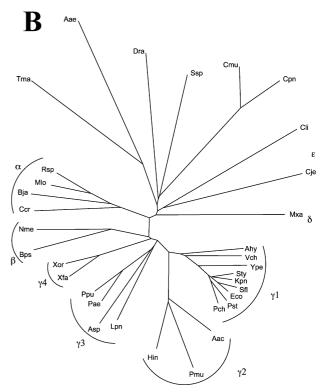


Fig. 5. The secretin family. (A) Phylogenetic tree for currently recognized members of the Secretin family. (B) 16S rRNA tree for organisms known to possess one or more Secretin family homologue(s). Protein abbreviations are as indicated in Table 7. The three nodulation proteins (footnote a in Table 7) were omitted due to their small size.

constituents of IISP systems (C. Peabody, M.-R. Yen and M.H. Saier, Jr., unpublished—in prep.). Two outliers, GspD Aae and LspD Lpn, adjacent to cluster 9 in Fig. 5A, are also constituents of IISP systems.

(2) Cluster 3 consists of two subclusters with very different sizes and functions. Cluster 3a includes proteins of 412-445 aas which function in competence (DNA)

Table 8
Organismal representation, size variation, and functional assignments for the phylogenetic clusters of secretins

Cluster ^a	Organisms represented ^b	Average size ± S.D.°	(Putative) function ^d	
1	γ3, α, β	712 ± 77	TIISP	
2	γ1	665 ± 30	TIISP	
3a	γ1, γ3, γ4, β	701 ± 63	pilus assembly	
3b	γ1, γ2	434 ± 19	competence	
4	Chlamydia	758 ± 3	TIISP	
5	$\gamma 2, \gamma 3, \alpha,$	442 ± 80	rough colony	
	(Chlorobium)	phenotype		
			(fimbrium assembly)	
6	γ1	540 ± 29	pilus assembly	
7	$\gamma 1, \gamma 3, \gamma 4, \beta$	606 ± 67	TIIISP	
8	Chlamydia	919 ± 2	TIIISP	
9	γ1, γ4, α	748 ± 26	TIISP	
10	γ1 (phage)	441 ± 29	phage assembly	
11 ^e	α (Rhizobia)	228 ± 7	nodulation	

- ^a Cluster refers to the phylogenetic cluster shown in Fig. 5A.
- ^b All Greek letter entries refer to the category of proteobacteria from which the proteins are derived.
 - $^{\rm c}$ Sizes are expressed in numbers of amino acid residues \pm S.D.
- d TIISP and TIIISP refer to type II secretory pathway (main terminal branch) and type III secretory pathway (pathogenesis-related systems), respectively.
- ^e The three nodulation proteins from Rhizobial species are not included in Fig. 5A, but they comprise a unique cluster.

uptake), while cluster 3b includes proteins of 578–766 aas, which affect colony morphology and may function in pilus assembly [87]. The phylogenetic clustering of these two subclusters might be interpreted to suggest a role of pili in competence.

- (3) In addition to cluster 3b, clusters 5 and 6 are probably concerned with pilus assembly [10]. The size ranges of these two clusters differ significantly from each other (442 \pm 80 versus 540 ± 29 aas). That of the cluster 3b secretins is 434 ± 19 aas, the same as that of cluster 5. As there are many distinct types of pili (fimbriae), it can be suggested that each of these three clusters is concerned with the biogenesis of a different type of pilus.
- (4) Cluster 7 and 8 secretins are constituents of IIISP systems [10]. The chlamydial cluster 8 proteins are about 300 residues longer than the cluster 7 secretins. This proved to be due to the presence in the former proteins of long N-terminal extensions that lack sequence similarity with anything else in the databases.
- (5) Cluster 10 proteins are phage-encoded (plus one protein from V. cholerae). These proteins, of uniform size (441 \pm 29 aas), are presumed to function in phage particle export and assembly. They are in the same size range as most of the pilin export secretins, possibly suggesting that the phage proteins were derived from the latter.
- (6) Finally, cluster 11 rhizobial proteins (not presented in Fig. 5A) are all exceptionally small (228 ± 7 aas), lacking the best-conserved portions of all other secretins. While these proteins function in nodulation, their specific biochemical roles are not known.

8. Conclusions

Table 9 summarizes the properties and organismal distributions of the five types of Gram-negative bacterial outer membrane porins that mediate protein secretion analyzed in this report. All of these families include roughly (within a two-fold range) the same numbers of sequenced members at the time when this work was completed (July 2001). Thus, the smallest family (FUP) has 58 members, while the largest family (AT) has slightly more than twice this number, 120 members. With respect to size variation, the FUP family members show a restricted size range (843 \pm 36) as does the OMF family (462 \pm 32), but the size variance of the three remaining families is much greater, particularly for the AT family (1261 \pm 589). The TPS and Secretin families show nearly the same average size with nearly the same standard deviation value (649 \pm 140 as compared with 619 \pm 149). In all five families, N-terminal hydrophobic leader sequences can be found that presumably target all of these cytoplasmically synthesized proteins to the GSP (IISP) secretory apparatus for export across the inner (cytoplasmic) membrane. In the periplasm, the targeting sequences are

Table 9
Properties and organismal distribution of outer membrane porins mediating protein secretion

Family	FUP	OMF	AT	TPS	Secretin		
TC#	(1.B.11)	(1.B.17)	(1.B.12)	(1.B.20)	(1.B.22)		
# Homologues	58	102	120	77	96		
Size range	729-895	347 - 541	418 - 3705	398-1056	273-1285		
Average size \pm S.D.	843 ± 36	462 ± 32	1261 ± 589	649 ± 140	619 ± 149		
Leader sequence	+	+	+	+	+		
Putative #β-strands	24	8	14	19	12		
# Homologues/organelle type							
Proteobacteria		•					
γ1	48	21	43	11	38		
γ2	1	4	8	13	4		
γ3	4	31	9	8	15		
γ4	1	3	4	4	5		
β	1	10	17	8	7		
α	1	14	26	9	12		
ε		7	6	3	1		
δ					1		
Chlamydiales			7	3	6		
Deinococcus	1	1		1	1		
Cyanobacteria	1	1		2	1		
Spirochaetales		1					
Aquificales		6		2	2		
Porphyromonas		3					
Chlorobium					1		
Thermotogales					2		
Fusobacteria				1			
Thermotogales				1			
Eukaryotes							
Animal				3			
Plant				6			
Fungi				2			

removed, and the proteins fold, either in the periplasm, or on the periplasmic surface of the outer membrane in preparation for insertion into the outer membrane where they function in the export of target proteins.

Each of the five families of OMPs functions by a distinct mechanism, often in conjunction with different sets of auxiliary proteins. Thus, fimbrial ushers function together with periplasmic chaperone proteins, and these two proteins cooperate to fold the fimbrial structural subunits before export to the cell surface in preparation for assembly of the fimbrium. By contrast, the OMFs function together with a primary cytoplasmic membrane transporter and a membrane fusion protein (see Introduction) to export an extended, unfolded protein which presumably folds to its native configuration only after it has crossed the outer membrane via the OMF pore. This situation contrasts with the ATs, which usually (but probably not always) export their own N-terminal domains, which can then be processed and folded on the external side. Often (but not always) the C-terminal AT domain is proteolytically cleaved from the exported virulence factor on the external surface. Finally, while the secretins, functioning with type II main terminal branch (MTB)-type secretory systems or with the type III pathogenicity-related systems, are believed to always export fully folded proteins of varied structures and functions, the TPS-type systems each usually exports a highly specific protein substrate that is encoded within a single operon with the TPS-type exporter. In a recent review, Jacob-Dubuisson et al. [19] have designated the substrate protein as "TpsA" and the transporter as "TpsB." While exceptions undoubtedly will prove to exist, the occurrence of simple twopartner systems appears to be the general rule. The degree to which these systems will prove capable of interchanging their substrates (i.e., see Ref. [66]) remains to be determined. In many of these systems, the targeting sequences are still poorly defined, and consequently the molecular basis for specificity is not well understood.

As summarized in Table 9, the organismal distributions of the five outer membrane protein secretion channel-types vary widely. All of them have been identified in all of the major proteobacterial subdivisions with the exception of FUPs, which have not yet been found in the δ - or ε -proteobacteria, and the OMFs, ATs and TPSs that have not yet been identified in the δ -subdivision. It should be noted, however, that only two ε -proteobacterial genomes (those of *H. pylori* and *C. jejuni*) have been fully sequenced, and no fully sequenced δ -proteobacterial genome is as yet available for analysis.

Outside of the proteobacteria, the ATs are most restricted in distribution, being found only in the chlamydial kingdom, while the FUPs have been identified only in cyanobacteria and in *Deinococcus*. The OMFs have not been identified in several bacterial kingdoms, but they are present in five divergent bacterial kingdoms, those including *Deinococcus*, *Aquifex*, *Porphyromonas*, the cyanobacterium, *Synechocystis*, and the spirochete, *Borrelia burgdorferi*. Finally, homo-

logues of TPS-type systems are found not only in four non-proteobacterial kingdoms, they are also found in three eukaryotic kingdoms where one such protein, Oep-75 of the pea, has been shown to be a component of a chloroplast protein import system [74,76]. Thus, while the TPS family members function in protein export in bacteria, they function in protein import in chloroplasts, exhibiting apparent reverse polarity. None of the families studied was found in Grampositive bacteria or archaea with the sole exception of *D. radiodurans*, a dual membrane organism that has erroneously been assigned to the Gram-positive bacterial kingdom [39,51].

In several cases, the phylogenetic analyses led to specific functional predictions. Thus, by comparing the protein phylogenetic trees with corresponding 16S rRNA trees, we were able to provide evidence for orthologous relationships where all putative orthologues within a cluster are presumed to serve a unified function. A striking example is the TPS family, where three large clusters of proteobacterial proteins were found (Fig. 4A). Each of these clusters included members, almost all of which were of uniform size. Moreover, in two of these proteobacterial clusters (clusters 3 and 5 in Fig. 4A), the phylogenies of the proteins corresponded to those of the 16S rRNAs within experimental error, and no organism exhibited more than a single member. By contrast, in the third proteobacterial cluster (cluster 6 in Fig. 4A) the phylogenies of the proteins did not follow those of the 16S rRNAs, and several organisms were found to have multiple paralogues within the cluster. Thus, both late gene duplication events and horizontal gene transfer may account for the anomalous features of this third phylogenetic cluster.

The analyses reported here illustrate the utility of the phylogenetic approach for (1) making functional predictions, (2) understanding the evolutionary pathways taken for the dissemination of members of a family in distantly related living organisms, and (3) identifying conserved structural and sequence features that serve to characterize a particular protein family. The expansion of available software for more detailed analyses of the type reported here should greatly enhance such endeavors.

Acknowledgements

Work in our laboratory was supported by NIH grants GM55434 and GM64368 from the National Institute of General Medical Sciences. We thank Mary Beth Hiller for her assistance in the preparation of this manuscript.

References

- M.H. Saier Jr., A functional-phylogenetic classification system for transmembrane solute transporters, Microbiol. Mol. Biol. Rev. 64 (2000) 354-411
- [2] M. Sandkvist, Biology of type II secretion, Mol. Microbiol. 40 (2001) 271–283.

- [3] J.-W. de Gier, J. Luirink, Biogenesis of inner membrane proteins in *Escherichia coli*, Mol. Microbiol. 40 (2001) 314–322.
- [4] J. Luirink, T. Samuelsson, J.-W. de Gier, YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly, FEBS Lett. 501 (2001) 1-5.
- [5] M.-R. Yen, K.T. Harley, Y.-H. Tseng, M.H. Saier Jr., Phylogenetic and structural analyses of the Oxa1 family of protein translocases, FEMS Microbiol. Lett. 204 (2001) 223–231.
- [6] M.H. Saier Jr., Families of transmembrane transporters selective for amino acids and their derivatives, Microbiology 146 (2000) 1775– 1795.
- [7] R. Voulhoux, G. Ball, B. Ize, M.L. Vasil, A. Lazdunski, L.-F. Wu, A. Filloux, Involvement of the twin-arginine translocation system in protein secretion via the type II pathway, EMBO J. 20 (2001) 6735–6741.
- [8] T.B. Cao, M.H. Saier Jr., Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions, Microbiology 147 (2001) 3201–3214.
- [9] P.J. Christie, Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines, Mol. Microbiol. 40 (2001) 294–305.
- [10] L. Nguyen, I.T. Paulsen, J. Tchieu, C.J. Hueck, M.H. Saier Jr., Phylogenetic analyses of the constituents of type III protein secretion systems, J. Mol. Microbiol. Biotechnol. 2 (2000) 125–144.
- [11] G.V. Plano, J.B. Day, F. Ferracci, Type III export: new uses for an old pathway, Mol. Microbiol. 40 (2001) 284–293.
- [12] O. Mol, B. Oudega, Molecular and structural aspects of fimbriae biosynthesis and assembly in *Escherichia coli*, FEMS Microbiol. Rev. 19 (1996) 25–52.
- [13] M. Van Rosmalen, M.H. Saier Jr., Structural and evolutionary relationships between two families of bacterial extracytoplasmic chaperone proteins which function cooperatively in fimbrial assembly, Res. Microbiol. 144 (1993) 507–527.
- [14] H. Wu, P.M. Fives-Taylor, Molecular strategies for fimbrial expression and assembly, Crit. Rev. Oral Biol. Med. 12 (2001) 101–115.
- [15] R. Binet, S. Létoffé, J.M. Ghigo, P. Delepelaire, C. Wandersman, Protein secretion by Gram-negative bacterial ABC exporters—a review, Gene 192 (1997) 7–11.
- [16] L.A. Fernandez, V. de Lorenzo, Formation of disulphide bonds during secretion of proteins through the periplasmic-independent type I pathway, Mol. Microbiol. 40 (2001) 332–346.
- [17] I.T. Paulsen, J.H. Park, P.S. Choi, M.H. Saier Jr., A family of Gramnegative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria, FEMS Microbiol. Lett. 156 (1997) 1–8.
- [18] B.J. Loveless, M.H. Saier Jr., A novel family of autotransporting, channel-forming, bacterial virulence proteins, Mol. Membr. Biol. 14 (1997) 113-123.
- [19] F. Jacob-Dubuisson, C. Locht, R. Antoine, Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins, Mol. Microbiol. 40 (2001) 306–313.
- [20] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25 (1997) 3389–3402.
- [21] J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res. 25 (1997) 4876–4882.
- [22] D.-F. Feng, R.F. Doolittle, Progressive alignment and phylogenetic tree construction of protein sequences, Methods Enzymol. 183 (1990) 375–387.
- [23] R.D.M. Page, TREEVIEW: an application to display phylogenetic trees on personal computers, Comput. Appl. Biosci. 12 (1996) 357–358.
- [24] G.B. Young, D.L. Jack, D.W. Smith, M.H. Saier Jr., The amino acid/auxin:proton symport permease family, Biochim. Biophys. Acta 1415 (1999) 306–322.

- [25] K. Hofmann, W. Stoffel, Tmbase—a database of membrane spanning protein segments, Biol. Chem. 347 (1993) 166.
- [26] G. von Heijne, Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule, J. Mol. Biol. 225 (1992) 487– 494.
- [27] Y. Zhai, M.H. Saier Jr., A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence, J. Mol. Microbiol. Biotechnol. 3 (2001) 501–502.
- [28] Y. Zhai, M.H. Saier Jr., A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins, J. Mol. Microbiol. Biotechnol. 3 (2001) 285–286.
- [29] J.A. Cuff, M.E. Clamp, A.S. Siddiqui, M. Finlay, G.J. Barton, Jpred: a consensus secondary structure prediction server, Bioinformatics 14 (1998) 892–893.
- [30] D.T. Jones, W.R. Taylor, J.M. Thornton, A model recognition approach to the prediction of all-helical membrane protein structure and topology, Biochemistry 33 (1994) 3038–3049.
- [31] T. Le, T.T. Tseng, M.H. Saier Jr., Flexible programs for the prediction of average amphipathicity of multiply aligned homologous proteins: application to integral membrane transport proteins, Mol. Membr. Biol. 16 (1999) 173-179.
- [32] K.W. Dodson, F. Jacob-Dubuisson, R.T. Striker, S.J. Hultgren, Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 3670–3674.
- [33] I. Vallet, J.W. Olson, S. Lory, A. Lazdunski, A. Filloux, The chaper-one/usher pathways of *Pseudomonas aeruginosa*: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 6911–6916.
- [34] O. Mol, W.C. Oudhuis, R.P. Oud, R. Sijbrandi, J. Luirink, N. Harms, B. Oudega, Biosynthesis of K88 fimbriae in *Escherichia coli*: interaction of tip-subunit FaeC with the periplasmic chaperone FaeE and the outer membrane usher FaeD, J. Mol. Microbiol. Biotechnol. 3 (2001) 135–142.
- [35] Q.A. Valent, J. Zaal, F.K. de Graaf, B. Oudega, Subcellular localization and topology of the K88 usher FaeD in *Escherichia coli*, Mol. Microbiol. 16 (1995) 1243–1257.
- [36] J. Cao, A.S. Khan, M.E. Bayer, D.M. Schifferli, Ordered translocation of 987P fimbrial subunits through the outer membrane of *Escherichia* coli, J. Bacteriol. 177 (1995) 3704–3713.
- [37] C.J. Smyth, M.B. Marron, J.M. Twohig, S.G. Smith, Fimbrial adhesins: similarities and variations in structure and biogenesis, FEMS Immunol. Med. Microbiol. 16 (1996) 127-139.
- [38] D.G. Thanassi, E.T. Saulino, M.-J. Lombardo, R. Roth, J. Heuser, S.J. Hultgren, The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 3146–3151.
- [39] O. White, J.A. Eisen, J.F. Heidelberg, E.K. Hickey, J.D. Peterson, R.J. Dodson, D.H. Haft, M.L. Gwinn, W.C. Nelson, D.L. Richardson, K.S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J.J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K.S. Makarova, L. Aravind, M.J. Daly, K.W. Minton, R.D. Ketchum, K.A. Ketchum, K.E. Nelson, S. Salzberg, H.O. Smith, J.C. Venter, C.M. Fraser, Genome sequence of the radioresistant bacterium *Deinococcus radiodurans* R1, Science 286 (1999) 1571–1577.
- [40] D. Jeanteur, J.H. Lakey, F. Pattus, The bacterial porin superfamily: sequence alignment and structure prediction, Mol. Microbiol. 5 (1991) 2153–2164.
- [41] S.S. Pao, I.T. Paulsen, M.H. Saier Jr., Major facilitator superfamily, Microbiol. Mol. Biol. Rev. 62 (1998) 1–34.
- [42] W. Saurin, M. Hofnung, E. Dassa, Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters, J. Mol. Evol. 48 (1999) 22–41.
- [43] T.-T. Tseng, K.S. Gratwick, J. Kollman, D. Park, D.H. Nies, A. Goffeau, M.H. Saier Jr., The RND permease superfamily: an ancient,

- ubiquitous and diverse family that includes human disease and development proteins, J. Mol. Microbiol. Biotechnol. 1 (1999) 107–125.
- [44] K.T. Harley, M.H. Saier Jr., A novel ubiquitous family of putative efflux transporters, J. Mol. Microbiol. Biotechnol. 2 (2000) 195–198.
- [45] T. Dinh, I.T. Paulsen, M.H. Saier Jr., A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of Gram-negative bacteria, J. Bacteriol. 176 (1994) 3825–3831.
- [46] V. Koronakis, J. Li, E. Koronakis, K. Stauffer, Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals, Mol. Microbiol. 23 (1997) 617–626.
- [47] S. Létoffé, P. Delepelaire, C. Wandersman, Protein secretion in Gramnegative bacteria: assembly of the three components of ABC proteinmediated exporters is ordered and promoted by substrate binding, EMBO J. 15 (1996) 5804–5811.
- [48] V. Koronakis, A. Sharff, E. Koronakis, B. Luisi, C. Hughes, Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export, Nature 405 (2000) 914–919.
- [49] X.Z. Li, K. Poole, Mutational analysis of the OprM outer membrane component of the MexA–MexB–OprM multidrug efflux system of *Pseudomonas aeruginosa*, J. Bacteriol. 183 (2001) 12–27.
- [50] K.K. Wong, F.S. Brinkman, R.S. Benz, R.E. Hancock, Evaluation of a structural model of *Pseudomonas aeruginosa* outer membrane protein OprM, an efflux component involved in intrinsic antibiotic resistance, J. Bacteriol. 183 (2001) 367–374.
- [51] G.J. Olsen, C.R. Woese, R. Overbeek, The winds of (evolutionary) change: breathing new life into microbiology, J. Bacteriol. 176 (1994) 1–6
- [52] P. Benjelloun-Touimi, J. Sansonetti, C. Parsot, SepA, the major extracellular protein of *Shigella flexneri*: autonomous secretion and involvement in tissue invasion, Mol. Microbiol. 17 (1995) 123–135.
- [53] T.M. Finn, L.A. Stevens, Tracheal colonization factor: a *Bordetella pertussis* secreted virulence determinant, Mol. Microbiol. 16 (1995) 625–634.
- [54] J. Jose, F. Jähnig, T.F. Meyer, Common structural features of IgA1 protease-like outer membrane protein autotransporters, Mol. Microbiol. 18 (1995) 377–382.
- [55] T. Suzuki, M.C. Lett, C. Saskawa, Extracellular transport of VirG protein in *Shigella*, J. Biol. Chem. 270 (1995) 30874–30880.
- [56] I.R. Henderson, R. Cappello, J.P. Nataro, Autotransporter proteins, evolution and redefining protein secretion, Trends Microbiol. 8 (2000) 529-532.
- [57] I.R. Henderson, J.P. Nataro, Virulence functions of autotransporter proteins, Infect. Immun. 69 (2001) 1231–1243.
- [58] J. Maurer, J. Jose, T.F. Meyer, Characterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions, J. Bacteriol. 181 (1999) 7014–7020.
- [59] D.M. Guyer, I.R. Henderson, J.P. Nataro, H.L.T. Mobley, Identification of Sat, an autotransporter toxin produced by uropathogenic *Escherichia coli*, Mol. Microbiol. 38 (2000) 53–66.
- [60] J.L. Shannon, R.C. Fernandez, The C-terminal domain of the *Borde-tella pertussis* autotransporter BrkA forms a pore in lipid bilayer membranes, J. Bacteriol. 181 (1999) 5838–5842.
- [61] J.W. St. Geme III, D. Cutter, The *Haemophilus influenzae* Hia adhesin is an autotransporter protein that remains uncleaved at the C-terminus and fully cell associated, J. Bacteriol. 182 (2000) 6005-6013.
- [62] C.T. Lattemann, J. Maurer, E. Gerland, T.F. Meyer, Autodisplay: functional display of active β-lactamase on the surface of *Escherichia coli* by the AIDA-I autotransporter, J. Bacteriol. 182 (2000) 3726–3733.
- [63] K. Poole, E. Schiebel, V. Braun, Molecular characterization of the hemolysin determinant of *Serratia marcescens*, J. Bacteriol. 170 (1988) 3177–3188.
- [64] R. Hertle, S. Brutsche, W. Groeger, S. Hobbie, W. Kock, U. Könninger, V. Braun, Specific phosphatidylethanolamine dependence of *Serratia marcescens* cytotoxin activity, Mol. Microbiol. 26 (1997) 853–865.
- [65] I. Hirono, N. Tange, T. Aoki, Iron-regulated haemolysin gene from Edwardsiell tarda, Mol. Microbiol. 24 (1997) 851–856.

- [66] F. Jacob-Dubuisson, C. Buisine, E. Willery, G. Renauld-Mongénie, C. Locht, Lack of fundamental complementation between *Bordetella pertussis* filamentous hemagglutinin and *Proteus mirabilis* HpmA hemolysin secretion machineries, J. Bacteriol. 179 (1997) 775–783.
- [67] F. Jacob-Dubuisson, B. Kehoe, E. Willery, N. Reveneau, C. Locht, D.A. Relman, Molecular characterization of *Bordetella bronchiseptica* filamentous haemagglutinin and its secretion machinery, Microbiology 146 (2000) 1211–1221.
- [68] K.L. Palmer, R.S. Munson Jr., Cloning and characterization of the genes encoding the hemolysin of *Haemophilus ducreyi*, Mol. Microbiol. 18 (1995) 821–830.
- [69] F. Jacob-Dubuisson, C. El-Hamel, N. Saint, S. Guèdin, E. Willery, G. Molle, C. Locht, Channel formation by FhaC, the outer membrane protein involved in the secretion of the *Bordetella pertussis* filamentous hemagglutinin, J. Biol. Chem. 274 (1999) 37731–37735.
- [70] U.W. Könninger, S. Hobbie, R. Benz, V. Braun, The haemolysin-secreting ShlB protein of the outer membrane of *Serratia marcescens*: determination of surface-exposed residues and formation of ion-per-meable pores by ShlB mutants in artificial lipid bilayer membranes, Mol. Microbiol. 32 (1999) 1212–1225.
- [71] S. Guédin, E. Willery, J. Tommassen, E. Fort, H. Drobecq, C. Locht, F. Jacob-Dubuisson, Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the *Bordetella pertussis* filamentous hemagglutinin, J. Biol. Chem. 275 (2000) 30202– 30210.
- [72] M. Akita, E. Nielsen, K. Keegstra, Identification of protein transport complexees in the chloroplastic envelope membranes via chemical cross-linking, J. Cell Biol. 136 (1997) 983–994.
- [73] E. Nielsen, M. Akita, J. Davila-Aponte, K. Keegstra, Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone, EMBO J. 16 (1997) 935–946.
- [74] D.J. Schnell, F. Kessler, G. Blobel, Isolation of components of the chloroplast protein import machinery, Science 266 (1994) 1007– 1012
- [75] P.J. Tranel, K. Keegstra, A novel, bipartite transit peptide targets OEP75 to the outer membrane of the chloroplastic envelope, Plant Cell 8 (1996) 2093–2104.
- [76] P.J. Tranel, J. Froehlich, G. Goyal, K. Keegstra, A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway, EMBO J. 14 (1995) 2436–2446.
- [77] S.C. Hinnah, K. Hill, R. Wagner, T. Schlicher, J. Soll, Reconstitution of a chloroplast protein import channel, EMBO J. 16 (1997) 7351– 7360
- [78] W. Bitter, M. Koster, M. Latijnhouwers, H. de Cock, J. Tommassen, Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of *Pseudomonas aer-uginosa*, Mol. Microbiol. 27 (1998) 209–219.
- [79] G.R. Cornelis, A. Boland, A.P. Boyd, C. Geuijen, M. Iriarte, C. Neyt, M.-P. Sory, I. Stainier, The virulence plasmid of *Yersinia*, and antihost genome, Microbiol. Mol. Biol. Rev. 62 (1998) 1315–1352.
- [80] N.-T. Hu, M.-N. Hung, D.C. Chen, R.-T. Tsai, Insertion mutagenesis of XpsD, an outer-membrane protein involved in extracellular protein secretion in *Xanthomonas campestris* pv. *campestris*, Microbiology 144 (1998) 1479–1486.
- [81] R.F. Collins, L. Davidsen, J.P. Derrick, R.C. Ford, T. Tønjum, Analysis of the PilQ secretin from *Neisseria meningitidis* by transmission electron microscopy reveals a dodecameric quaternary structure, J. Bacteriol. 183 (2001) 3825–3832.
- [82] R. Brok, P. Van Gelder, M. Winterhalter, U. Ziese, A.J. Koster, H. de Cock, M. Koster, J. Tommassen, W. Bitter, The C-terminal domain of the *Pseudomonas* secretin XcpQ forms oligomeric rings with pore activity, J. Mol. Biol. 294 (1999) 1169–1179.
- [83] A. Martínez, P. Ostrovsky, D.N. Nunn, Identification of an additional member of the secretin superfamily of proteins in *Pseudomonas aeruginosa* that is able to function in type II protein secretion, Mol. Microbiol. 28 (1998) 1235–1246.

- [84] B.M. Davis, E.H. Lawson, M. Sandkvist, A. Ali, S. Sozhamannan, M. Waldor, Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXφ, Science 288 (2000) 333– 335
- [85] D.K. Marciano, M. Russel, S.M. Simon, An aqueous channel for filamentous phage export, Science 284 (1999) 1516–1519.
- [86] S.A. Schmidt, D. Bieber, S.W. Ramer, J. Hwang, C.-Y. Wu, G.
- Schoolnik, Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic *Escherichia coli*, J. Bacteriol. 183 (2001) 4848–4859.
- [87] E.M. Haase, J.L. Zmuda, F.A. Scannapieco, Identification and molecular analysis of rough-colony-specific outer membrane proteins of *Actinobacillus actinomycetemcomitans*, Infect. Immun. 67 (1999) 2901–2908.